Person:
Valenciano González, Ana Isabel

Loading...
Profile Picture
First Name
Ana Isabel
Last Name
Valenciano González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Characterization of Ghrelin O-Acyltransferase (GOAT) in goldfish (Carassius auratus)
    (Plos ONE, 2017) Blanco Imperiali, Ayelén M.; Gómez Boronat, Miguel; Alonso Gómez, Ángel Luis; Yufa, Roman; Unniappan, Suraj; Delgado Saavedra, María Jesús; Valenciano González, Ana Isabel
    Ghrelin is the only known hormone posttranslationally modified with an acylation. This modification is crucial for most of ghrelin’s physiological effects and is catalyzed by the polytopic enzyme ghrelin O-acyltransferase (GOAT). The aim of this study was to characterize GOAT in a teleost model, goldfish (Carassius auratus). First, the full-length cDNA sequence was obtained by RT-PCR and rapid amplification of cDNA ends methods. Two highly homologous cDNAs of 1491 and 1413 bp, respectively, named goat-V1 and goat-V2 were identified. Deduced protein sequences (393 and 367 amino acids, respectively) are predicted to present 11 and 9 transmembrane regions, respectively, and both contain two conserved key residues proposed to be involved in catalysis: asparagine 273 and histidine 304. RT-qPCR revealed that both forms of goat mRNAs show a similar widespread tissue distribution, with the highest expression in the gastrointestinal tract and gonads and less but considerable expression in brain, pituitary, liver and adipose tissue. Immunostaining of intestinal sections showed the presence of GOAT immunoreactive cells in the intestinal mucosa, some of which colocalize with ghrelin. Using an in vitro approach, we observed that acylated ghrelin downregulates GOAT gene and protein levels in cultured intestine in a time-dependent manner. Finally, we found a rhythmic oscillation of goat mRNA expression in the hypothalamus, pituitary and intestinal bulb of goldfish fed at midday, but not at midnight. Together, these findings report novel data characterizing GOAT, and offer new information about the ghrelinergic system in fish.
  • Item
    Gene characterization of nocturnin paralogues in goldfish: full coding sequences, structure, phylogeny and tissue expression
    (Internationl Journal of Molecular Sciences, 2024) Madera Sánchez, Diego; Alonso-Gómez, Aitana; Delgado Saavedra, María Jesús; Valenciano González, Ana Isabel; Alonso Gómez, Ángel Luis
    The aim of this work is the full characterization of all the nocturnin (noc) paralogues expressed in a teleost, the goldfish. An in silico analysis of the evolutive origin of noc in Osteichthyes is performed, including the splicing variants and new paralogues appearing after teleostean 3R genomic duplication and the cyprinine 4Rc. After sequencing the full-length mRNA of goldfish, we obtained two isoforms for noc-a (noc-aa and noc-ab) with two splice variants (I and II), and only one for noc-b (noc-bb) with two transcripts (II and III). Using the splicing variant II, the prediction of the secondary and tertiary structures renders a well-conserved 3D distribution of four α-helices and nine β-sheets in the three noc isoforms. A synteny analysis based on the localization of noc genes in the patrilineal or matrilineal subgenomes and a phylogenetic tree of protein sequences were accomplished to stablish a classification and a long-lasting nomenclature of noc in goldfish, and valid to be extrapolated to allotetraploid Cyprininae. Finally, both goldfish and zebrafish showed a broad tissue expression of all the noc paralogues. Moreover, the enriched expression of specific paralogues in some tissues argues in favour of neo- or subfunctionalization.
  • Item
    In Situ Localization and Rhythmic Expression of Ghrelin and ghs-r1 Ghrelin Receptor in the Brain and Gastrointestinal Tract of Goldfish (Carassius auratus)
    (PLoS ONE, 2015) Sánchez Bretaño, Aída; Blanco Imperiali, Ayelén M.; Unniappan, Suraj; Kah, Olivier; Gueguen, Marie-M.; Bertucci, Juan I.; Alonso Gómez, Ángel Luis; Valenciano González, Ana Isabel; Isorna Alonso, Esther; Delgado, María J.
    Ghrelin is a gut-brain peptide hormone, which binds to the growth hormone secretagogue receptor (GHS-R) to regulate a wide variety of biological processes in fish. Despite these prominent physiological roles, no studies have reported the anatomical distribution of preproghrelin transcripts using in situ hybridization in a non-mammalian vertebrate, and its mapping within the different encephalic areas remains unknown. Similarly, no information is available on the possible 24-h variations in the expression of preproghrelin and its receptor in any vertebrate species. The first aim of this study was to investigate the anatomical distribution of ghrelin and GHS-R1a ghrelin receptor subtype in brain and gastrointestinal tract of goldfish (Carassius auratus) using immunohistochemistry and in situ hybridization. Our second aim was to characterize possible daily variations of preproghrelin and ghs-r1 mRNA expression in central and peripheral tissues using real-time reverse transcription-quantitative PCR. Results show ghrelin expression and immunoreactivity in the gastrointestinal tract, with the most abundant signal observed in the mucosal epithelium. These are in agreement with previous findings on mucosal cells as the primary synthesizing site of ghrelin in goldfish. Ghrelin receptor was observed mainly in the hypothalamus with low expression in telencephalon, pineal and cerebellum, and in the same gastrointestinal areas as ghrelin. Daily rhythms in mRNA expression were found for preproghrelin and ghs-r1 in hypothalamus and pituitary with the acrophase occurring at nighttime. Preproghrelin, but not ghs-r1a, displayed a similar daily expression rhythm in the gastrointestinal tract with an amplitude 3-fold higher than the rest of tissues. Together, these results described for the first time in fish the mapping of preproghrelin and ghrelin receptor ghs-r1a in brain and gastrointestinal tract of goldfish, and provide the first evidence for a daily regulation of both genes expression in such locations, suggesting a possible connection between the ghrelinergic and circadian systems in teleosts.
  • Item
    First evidence of nocturnin in fish: two isoforms in goldfish differentially regulated by feeding
    (American Journal of Physiology, 2018) Blanco Imperiali, Ayelén M.; Gómez-Boronat, Miguel; Madera, Diego; Valenciano González, Ana Isabel; Alonso Gómez, Ángel Luis; Delgado Saavedra, María Jesús
    Nocturnin (NOC) is a unique deadenylase with robust rhythmic expression involved in the regulation of metabolic processes in mammals. Currently, the possible presence of NOC in fish is unknown. This report aimed to identify NOC in a fish model, the goldfish (Carassius auratus), and to study the possible regulation of its expression by feeding. Two partial-length cDNAs of 293 and 223 bp, named nocturnin-a (noc-a) and nocturnin-b (noc-b), were identified and found to be highly conserved among vertebrates. Both mRNAs show a similar widespread distribution in central and peripheral tissues, with higher levels detected for noc-a compared with noc-b. The periprandial expression profile revealed that noc-a mRNAs rise sharply after a meal in hypothalamus, intestinal bulb, and liver, whereas almost no changes were observed for noc-b. Food deprivation was found to exert opposite effects on the expression of both NOCs (generally inhibitory for noc-a, and stimulatory for noc-b) in the three mentioned tissues. A single meal after a 48-h food deprivation period reversed (totally or partially) the fasting-induced decreases in noc-a transcripts in all studied tissues and the increases in noc-b expression in the intestinal bulb. Together, this study offers the first report of NOC in fish and shows a high dependence of its expression on feeding and nutritional status. The differential responses to feeding of the two NOCs raise the possibility that they might be underlying different physiological mechanisms (e.g., food intake, lipid mobilization, energy homeostasis) in fish.
  • Item
    Interplay between the endocrine and circadian systems in fishes
    (Journal of Endocrinology, 2017) Isorna Alonso, Esther; Pedro Ormeño, Nuria de; Valenciano González, Ana Isabel; Alonso Gómez, Ángel Luis; Delgado Saavedra, María Jesús
    The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light–darkness and feeding–fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light–darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.