Person:
Leite Fernandes, Vitor Samuel

Loading...
Profile Picture
First Name
Vitor Samuel
Last Name
Leite Fernandes
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Fisiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Neuronal and non-neuronal bradykinin receptors are involved in the contraction and/or relaxation to the pig bladder neck smooth muscle
    (Neurourology and urodynamics, 2013) Ribeiro, Ana Sofía Fernandes; Leite Fernandes, Vitor Samuel; Martínez Sainz, María Del Pilar; Martínez-Sáenz, Ana; Pazos Rodríguez, María Ruth; Orensanz Muñoz, Luis Miguel; Recio Visedo, María Paz; Bustamante Alarma, Salvador; Carballido Rodríguez, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Aims: The current study investigates the role played by bradykinin (BK) receptors in the contractility to the pig bladder neck smooth muscle. Methods: Bladder neck strips were mounted in myographs for isometric force recordings and BK receptors expression was also determined by immunohistochemistry. Results: B2 receptor expression was observed in the muscular layer and urothelium whereas B1 expression was consistent detected in urothelium. A strong B2 immunoreactivity was also observed within nerve fibers among smooth muscle bundles. On urothelium-denuded preparations basal tone, BK induced concentration-dependent contractions which were reduced in urothelium-intact samples, by extracellular Ca(2+) removal and by blockade of B2 receptors and voltage-gated Ca(2+) (VOC) and non-VOC channels, and increased by cyclooxygenase (COX) inhibition. On phenylephrine-precontracted denuded strips, under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. In urothelium-intact samples, the B1 receptor agonist kallidin promoted concentration-dependent relaxations which were reduced by blockade of B1 receptors, COX, COX-1 and large-conductance Ca(2+) -activated K(+) (BKCa ) channels and abolished in urothelium-denuded samples and in K(+) -enriched physiological saline solution-precontracted strips. Conclusions: These results suggest that BK produces contraction of pig bladder neck via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry via VOC and non-VOC channels with a minor role for intracellular Ca(2+) mobilization. Facilitatory neuronal B2 receptors modulating NANC inhibitory neurotransmission and urothelial B1 receptors producing relaxation via the COX-1 pathway and BKCa channel opening are also demonstrated.
  • Item
    Endogenous Hydrogen Sulfide has a Powerful Role in Inhibitory Neurotransmission to the Pig Bladder Neck
    (Journal of Urology, 2013) Leite Fernandes, Vitor Samuel; Ribeiro, Ana S.F.; Martínez, María Pilar; Orensanz, Luis M.; Barahona Gomáriz, María Victoria; Martínez-Sáenz, Ana; Recio Visedo, María Paz; Benedito Castellote, Sara; Bustamante, Salvador; Carballido, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Purpose: We investigated the possible involvement of H2S in nitric oxide independent inhibitory neurotransmission to the pig bladder neck. Materials and methods: We used immunohistochemistry to determine the expression of the H2S synthesis enzymes cystathionine γ-lyase and cystathionine β-synthase. We also used electrical field stimulation and myographs for isometric force recordings to study relaxation in response to endogenously released or exogenously applied H2S in urothelium denuded, phenylephrine precontracted bladder neck strips under noradrenergic, noncholinergic, nonnitrergic conditions. Results: Cystathionine γ-lyase and cystathionine β-synthase expression was observed in nerve fibers in the smooth muscle layer. Cystathionine γ-lyase and cystathionine β-synthase immunoreactive fibers were also identified around the small arteries supplying the bladder neck. Electrical field stimulation (2 to 16 Hz) evoked frequency dependent relaxation, which was decreased by DL-propargylglycine and abolished by tetrodotoxin (blockers of cystathionine γ-lyase and neuronal voltage gated Na(+) channels, respectively). The cystathionine β-synthase inhibitor O-(carboxymethyl)hydroxylamine did not change nerve mediated responses. The H2S donor GYY4137 (0.1 nM to 10 μM) induced potent, concentration dependent relaxation, which was not modified by neuronal voltage gated Na(+) channels, or cystathionine γ-lyase or cystathionine β-synthase blockade. Conclusions: Results suggest that endogenous H2S synthesized by cystathionine γ-lyase and released from intramural nerves acts as a powerful signaling molecule in nitric oxide independent inhibitory transmission to the pig bladder neck.
  • Item
    Hydrogen sulfide mediated inhibitory neurotransmission to the pig bladder neck: role of KATP channels, sensory nerves and calcium signaling.
    (Journal of Urology, 2013) Leite Fernandes, Vitor Samuel; Fernandes Ribeiro, Ana Sofía; Barahona Gomáriz, María Victoria; Orensanz Muñoz, Luis Miguel; Martínez Sáenz, Ana; Recio Visedo, María Paz; Martínez Gómez, Ana Cristina; Bustamante, Salvador; Carballido, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Purpose: Because neuronal released endogenous H2S has a key role in relaxation of the bladder outflow region, we investigated the mechanisms involved in H2S dependent inhibitory neurotransmission to the pig bladder neck. Materials and methods: Bladder neck strips were mounted in myographs for isometric force recording and simultaneous measurement of intracellular Ca(2+) and tension. Results: On phenylephrine contracted preparations electrical field stimulation and the H2S donor GYY4137 evoked frequency and concentration dependent relaxation, which was reduced by desensitizing capsaicin sensitive primary afferents with capsaicin, and the blockade of adenosine 5'-triphosphate dependent K(+) channels, cyclooxygenase and cyclooxygenase-1 with glibenclamide, indomethacin and SC560, respectively. Inhibition of vanilloid, transient receptor potential A1, transient receptor potential vanilloid 1, vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide and calcitonin gene-related peptide receptors with capsazepine, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively, also decreased electrical field stimulation and GYY4137 responses. H2S relaxation was not changed by guanylyl cyclase, protein kinase A, or Ca(2+) activated or voltage gated K(+) channel inhibitors. GYY4137 inhibited the contractions induced by phenylephrine and by K(+) enriched (80 mM) physiological saline solution. To a lesser extent it decreased the phenylephrine and K(+) induced increases in intracellular Ca(2+). Conclusions: H2S produces pig bladder neck relaxation via activation of adenosine 5'-triphosphate dependent K(+) channel and by smooth muscle intracellular Ca(2+) desensitization dependent mechanisms. H2S also promotes the release of sensory neuropeptides and cyclooxygenase-1 pathway derived prostanoids from capsaicin sensitive primary afferents via transient receptor potential A1, transient receptor potential vanilloid 1 and/or related ion channel activation. Keywords: 4-AP; 4-aminopyridine; AM; ATP; ATP dependent K(+); CGRP; COX; CSE; CSPA; Ca(2+) activated K(+); Emax; K(ATP); K(Ca); K(V); KPSS; L-NOARG; MLCP; N(G)-nitro-L-arginine; NO; PACAP; PKA; PSS; TRPA(1); TRPV(1); VOC; VPAC; [Ca(2+)](i); acetoxymethyl ester; adenosine 5′-triphosphate; calcitonin gene-related peptide; capsaicin sensitive primary afferent; cyclooxygenase; cystathionine γ-lyase; hydrogen sulfide; intracellular Ca(2+); maximum response; muscle, smooth; myosin light chain phosphatase; nitric oxide; physiological saline solution; pituitary adenylyl cyclase activating polypeptide; potassium channels; potassium rich PSS; protein kinase A; synaptic transmission; transient receptor potential A1; transient receptor potential vanilloid 1; urinary bladder; vasoactive intestinal peptide receptor; voltage gated Ca(2+); voltage gated K(+).