Person:
Leite Fernandes, Vitor Samuel

Loading...
Profile Picture
First Name
Vitor Samuel
Last Name
Leite Fernandes
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Fisiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Neuronal and non-neuronal bradykinin receptors are involved in the contraction and/or relaxation to the pig bladder neck smooth muscle
    (Neurourology and urodynamics, 2013) Ribeiro, Ana Sofía Fernandes; Leite Fernandes, Vitor Samuel; Martínez Sainz, María Del Pilar; Martínez-Sáenz, Ana; Pazos Rodríguez, María Ruth; Orensanz Muñoz, Luis Miguel; Recio Visedo, María Paz; Bustamante Alarma, Salvador; Carballido Rodríguez, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Aims: The current study investigates the role played by bradykinin (BK) receptors in the contractility to the pig bladder neck smooth muscle. Methods: Bladder neck strips were mounted in myographs for isometric force recordings and BK receptors expression was also determined by immunohistochemistry. Results: B2 receptor expression was observed in the muscular layer and urothelium whereas B1 expression was consistent detected in urothelium. A strong B2 immunoreactivity was also observed within nerve fibers among smooth muscle bundles. On urothelium-denuded preparations basal tone, BK induced concentration-dependent contractions which were reduced in urothelium-intact samples, by extracellular Ca(2+) removal and by blockade of B2 receptors and voltage-gated Ca(2+) (VOC) and non-VOC channels, and increased by cyclooxygenase (COX) inhibition. On phenylephrine-precontracted denuded strips, under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. In urothelium-intact samples, the B1 receptor agonist kallidin promoted concentration-dependent relaxations which were reduced by blockade of B1 receptors, COX, COX-1 and large-conductance Ca(2+) -activated K(+) (BKCa ) channels and abolished in urothelium-denuded samples and in K(+) -enriched physiological saline solution-precontracted strips. Conclusions: These results suggest that BK produces contraction of pig bladder neck via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry via VOC and non-VOC channels with a minor role for intracellular Ca(2+) mobilization. Facilitatory neuronal B2 receptors modulating NANC inhibitory neurotransmission and urothelial B1 receptors producing relaxation via the COX-1 pathway and BKCa channel opening are also demonstrated.
  • Item
    Endogenous Hydrogen Sulfide has a Powerful Role in Inhibitory Neurotransmission to the Pig Bladder Neck
    (Journal of Urology, 2013) Leite Fernandes, Vitor Samuel; Ribeiro, Ana S.F.; Martínez, María Pilar; Orensanz, Luis M.; Barahona Gomáriz, María Victoria; Martínez-Sáenz, Ana; Recio Visedo, María Paz; Benedito Castellote, Sara; Bustamante, Salvador; Carballido, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Purpose: We investigated the possible involvement of H2S in nitric oxide independent inhibitory neurotransmission to the pig bladder neck. Materials and methods: We used immunohistochemistry to determine the expression of the H2S synthesis enzymes cystathionine γ-lyase and cystathionine β-synthase. We also used electrical field stimulation and myographs for isometric force recordings to study relaxation in response to endogenously released or exogenously applied H2S in urothelium denuded, phenylephrine precontracted bladder neck strips under noradrenergic, noncholinergic, nonnitrergic conditions. Results: Cystathionine γ-lyase and cystathionine β-synthase expression was observed in nerve fibers in the smooth muscle layer. Cystathionine γ-lyase and cystathionine β-synthase immunoreactive fibers were also identified around the small arteries supplying the bladder neck. Electrical field stimulation (2 to 16 Hz) evoked frequency dependent relaxation, which was decreased by DL-propargylglycine and abolished by tetrodotoxin (blockers of cystathionine γ-lyase and neuronal voltage gated Na(+) channels, respectively). The cystathionine β-synthase inhibitor O-(carboxymethyl)hydroxylamine did not change nerve mediated responses. The H2S donor GYY4137 (0.1 nM to 10 μM) induced potent, concentration dependent relaxation, which was not modified by neuronal voltage gated Na(+) channels, or cystathionine γ-lyase or cystathionine β-synthase blockade. Conclusions: Results suggest that endogenous H2S synthesized by cystathionine γ-lyase and released from intramural nerves acts as a powerful signaling molecule in nitric oxide independent inhibitory transmission to the pig bladder neck.
  • Item
    Constitutive PKA activity is essential for maintaining the excitability and contractility in guinea pig urinary bladder smooth muscle: role of the BK channel
    (American journal of physiology. Cell physiology, 2014) Xin, Wenkuan; Li, Ning; Cheng, Qiuping; Leite Fernandes, Vitor Samuel; Petkov, Georgi V.
    The elevation of protein kinase A (PKA) activity activates the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in urinary bladder smooth muscle (UBSM) cells and consequently attenuates spontaneous phasic contractions of UBSM. However, the role of constitutive PKA activity in UBSM function has not been studied. Here, we tested the hypothesis that constitutive PKA activity is essential for controlling the excitability and contractility of UBSM. We used patch clamp electrophysiology, line-scanning confocal and ratiometric fluorescence microscopy on freshly isolated guinea pig UBSM cells, and isometric tension recordings on freshly isolated UBSM strips. Pharmacological inhibition of the constitutive PKA activity with H-89 or PKI 14-22 significantly reduced the frequency and amplitude of spontaneous transient BK channel currents (TBKCs) in UBSM cells. Confocal and ratiometric fluorescence microscopy studies revealed that inhibition of constitutive PKA activity with H-89 reduced the frequency and amplitude of the localized Ca(2+) sparks but increased global Ca(2+) levels and the magnitude of Ca(2+) oscillations in UBSM cells. H-89 abolished the spontaneous transient membrane hyperpolarizations and depolarized the membrane potential in UBSM cells. Inhibition of PKA with H-89 or KT-5720 also increased the amplitude and muscle force of UBSM spontaneous phasic contractions. This study reveals the novel concept that constitutive PKA activity is essential for controlling localized Ca(2+) signals generated by intracellular Ca(2+) stores and cytosolic Ca(2+) levels. Furthermore, constitutive PKA activity is critical for mediating the spontaneous TBKCs in UBSM cells, where it plays a key role in regulating spontaneous phasic contractions in UBSM.