Person:
Campuzano Ruiz, Susana

Loading...
Profile Picture
First Name
Susana
Last Name
Campuzano Ruiz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Toward Liquid Biopsy: Determination of the Humoral Immune Response in Cancer Patients Using HaloTag Fusion Protein-Modified Electrochemical Bioplatforms
    (Analytical Chemistry, 2016) Garranzo Asensio, María; Guzmán Aránguez, Ana Isabel; Povés Francés, Carmen; Fernández Aceñero, Mª Jesús; Torrente Rodríguez, Rebeca Magnolia; Ruiz Valdepeñas Montiel, Víctor; Domínguez Muñóz, Gemma; San Frutos Llorente, Luis; Rodríguez Salas, Nuria; Villalba Díaz, Mayte; Pingarrón Carrazón, José Manuel; Campuzano Ruiz, Susana; Barderas Manchado, Rodrigo
    Autoantibodies raised against tumor-associated antigens have shown high promise as clinical biomarkers for reliable diagnosis, prognosis, and therapy monitoring of cancer. An electrochemical disposable biosensor for the specific and sensitive determination of p53-specific autoantibodies has been developed for the first time in this work. This biosensor involves the use of magnetic microcarriers (MBs) modified with covalently immobilized HaloTag fusion p53 protein as solid supports for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric signal using the system hydroquinone/H2O2 was related to the levels of p53-autoantibodies in the sample. The biosensor was applied for the analysis of sera from 24 patients with high-risk of developing colorectal cancer and 6 from patients already diagnosed with colorectal (4) and ovarian (2) cancer. The developed biosensor was able to determine p53 autoantibodies with a sensitivity higher than that of a commercial standard ELISA using a just-in-time produced protein in a simpler protocol with less sample volume and easily miniaturized and cost-effective instrumentation.
  • Item
    Multiplexed monitoring of a novel autoantibody diagnostic signature of colorectal cancer using HaloTag technology-based electrochemical immunosensing platform
    (Theranostics, 2020) Garranzo Asensio, María; Guzmán Aránguez, Ana Isabel; Povedano, Eloy; Ruiz Valdepeñas Montiel, Víctor; Povés Francés, Carmen; Fernández Aceñero, María Jesús; Montero Calle, Ana; Solís Fernández, Guillermo; Fernández Díez, Servando; Camps, Jordi; Arenas, Meritxell; Rodríguez Tomás, Elisabeth; Joven, Jorge; Sánchez Martínez, Maricruz; Rodrígez, Nuria; Domínguez Muñóz, Gemma; Yáñez Sedeño, Paloma; Pingarrón Carrazón, José Manuel; Campuzano Ruiz, Susana; Barderas Manchado, Rodrigo
    Background and Purpose: The humoral immune response in cancer patients can be used for early detection of the disease. Autoantibodies raised against tumor-associated antigens (TAAs) are promising clinical biomarkers for reliable cancer diagnosis, prognosis, and therapy monitoring. In this study, an electrochemical disposable multiplexed immunosensing platform able to integrate difficult- and easy-to-express colorectal cancer (CRC) TAAs is reported for the sensitive determination of eight CRC-specific autoantibodies. Methods: The electrochemical immunosensing approach involves the use of magnetic microcarriers (MBs) as solid supports modified with covalently immobilized HaloTag fusion proteins for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric responses measured using the hydroquinone (HQ)/H2O2 system were related to the levels of autoantibodies in plasma. Results: The biosensing platform was applied to the analysis of autoantibodies against 8 TAAs described for the first time in this work in plasma samples from healthy asymptomatic individuals (n=3), and patients with high-risk of developing CRC (n=3), and from patients already diagnosed with colorectal (n=3), lung (n=2) or breast (n=2) cancer. The developed bioplatform demonstrated an improved discrimination between CRC patients and controls (asymptomatic healthy individuals and breast and lung cancer patients) compared to an ELISA-like luminescence test. Conclusions: The proposed methodology uses a just-in-time produced protein in a simpler protocol, with low sample volume, and involves cost-effective instrumentation, which could be used in a high-throughput manner for reliable population screening to facilitate the detection of early CRC patients at affordable cost.