Person:
Abati Gómez, Jacobo

Loading...
Profile Picture
First Name
Jacobo
Last Name
Abati Gómez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Mineralogía y Petrología
Area
Petrología y Geoquímica
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 17
  • Item
    U–Pb evidence for a polyorogenic evolution of the HP–HT units of the NW Iberian Massif
    (Contributions to mineralogy and petrology, 2002) Fernández Suárez, Javier; Corfu, Fernando; Arenas Martín, Ricardo; Marcos Vallaure, Alberto; Martínez Catalán, José Ramón; Díaz García, Florentino; Abati Gómez, Jacobo; Fernández Rodríguez, Francisco José
    A isotope dilution thermal ionisation mass spectrometry U–Pb geochronological study was carried out on the high-pressure and high-temperature units (HP–HT units) overlyingthe oceanic suture in the Allochthonous Complexes of the NW Iberian Variscan Belt. The rocks investigated are seven granulite- to eclogitefacies paragneisses and one leucosome within mafic highpressure granulites in the Ordenes and Cabo Ortegal Complexes of NW Spain. U–Pb datingof zircon, monazite, titanite and rutile reveal the presence of a pervasive Early Ordovician metamorphic event at ca. 500–480Ma and a later Early Devonian event at ca. 400–380 Ma. The U–Pb ages, in conjunction with petrological and structural data, indicate that the high-pressure event recorded by these rocks is Early Ordovician in age. Monazite ages in the paragneisses suggest that peak metamorphic conditions were reached at ca. 500–485Ma. Subsequently, the rock ensemble underwent exhumation accompanied by partial meltingan d zircon growth at ca. 485–470Ma. Meltingof mafic granulites was coeval with this latter episode as indicated by zircon crystallisation age in the leucosomes dated at ca. 486 Ma. Based on these data and on the general features of magmatism and metamorphic evolution, it is proposed that this process took place at a convergent plate boundary within a peri-Gondwanan oceanic domain. Monazite, titanite and rutile data in some of the samples studied show evidence of a second metamorphic episode that took place between ca. 400 and 380 Ma (with a peak at ca. 390–385Ma). This Early Devonian event, at variance with the previous one, was not pervasive, but, rather, was localised in areas of intense Variscan tectonothermal reworking. It is claimed that this later metamorphic event was recorded by the U–Pb system in areas where monazite and titanite growth was enhanced by fluid circulation in highly strained rocks (Variscan shear zones). Accordingto previous structural studies and Ar–Ar datingof fabrics, this Early Devonian episode took place as the HP–HT units were deformed and thrusted upon the ophiolitic units in the early stages of the Variscan collision.
  • Item
    Thrust and detachment systems in the Ordenes Complex (northwestern Spain): Implications for the Variscan-Appalachian geodynamics.
    (Special paper - Geological Society of America, Variscan-Appalachian dynamics: The building of the late Paleozoic basement, 2002) Martínez Catalán, José Ramón; Díaz García, Florentino; Arenas Martín, Ricardo; Abati Gómez, Jacobo; Castiñeiras García, Pedro; González Cuadra, Pablo; Gómez Barreiro, Juan; Rubio Pascual, Francisco J.; Martínez Catalán, José Ramón; Hatcher, Robert D.; Arenas Martín, Ricardo; Díaz García, Florentino
    The allochthonous complexes of northwestern Iberia consist of a pile of units of Gondwanan and peri-Gondwanan provenance, and include oceanic lithosphere. The units are classiµed into upper, intermediate (ophiolitic), and basal. We present a dettailed geological map and sections across the Ordenes Complex, together with a brief description of its units and a discussion of its structures. In the upper units, two complete cycles of burial and exhumation have been identiµed. The first cycle, of Early Ordovician age, records a convergent plate margin, possibly in a peri-Gondwanan domain. The second is Variscan, and the structural evollution of the three groups of allochthonous units re×ects progressive accretion to an acctive orogenic wedge. Continuous understacking of continental and oceanic fragments toward the west began with the upper units and ended with the basal units. The latter represent the outermost margin of Gondwana, and their subduction marked the closure of the intervening ocean, and the change from subduction to a collisional regime. Terrane accretion took place in the Devonian and, during the Late Devonian and the Carboniferous, the deformation progressed inboard of the Gondwana margin. Variscan emplacement of the allochthonous units occurred in two successive thrusting episodes. The µrst placed the basal units over the sedimentary cover of the Gondwana margin in what seems to follow a normal sequence of thrusting. The second carried the upper and ophiolitic units on top of the previous nappe pile and has an out-of-sequence character. A possible correlation of the Early Ordovician convergence, early Variscan accretion, subsequent oceanic closure, continent-continent collision, and renewed thrust activity during the late Carboniferous in northwestern Iberia is established with the Taconian, Acadian, and Alleghanian orogenies in the Appalachians.
  • Item
    Tectonic evolution of the upper allochthon of the Órdenes complex (northwestern Iberian Massif): Structural constraints to a polyorogenic peri-Gondwanan terrane
    (The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, 2007) Gómez Barreiro, Juan; Martínez Catalán, José Ramón; Arenas Martín, Ricardo; Castiñeiras García, Pedro; Abati Gómez, Jacobo; Díaz García, Florentino; Wijbrans, Jan R.; Linnemann, Ulf; Nance, R. Damian; Kraft, Petr; Zulaud, Gernold
    The upper allochthon of northwest Iberia represents the most exotic terrane of this part of the European Variscan belt. Recent advances in the metamorphic petrology, structural geology, and geochronology of the upper allochthon in the Órdenes complex are integrated into a synthesis of its tectonic evolution, constraining the main tectonothermal events. Important aspects of this synthesis are (1) the interpretation of Cambro-Ordovician magmatism and earliest metamorphic event, as the result of drifting of a peri-Gondwanan terrane; (2) the subsequent shortening and crustal thickening of the terrane related to its subduction and accretion to Laurussia; (3) a younger cycle of shortening and extension resulting from convergence between Laurussia and Gondwana; and (4) the emplacement of this exotic terrane as the upper allochthon, together with underlying ophiolitic and basal allochthons, during the Laurussia-Gondwana collision. Implications derived from the well-established tectonothermal sequence are discussed in the context of Paleozoic paleogeography and geodynamics. The evolution of this part of the belt is related first to the closure of the Tornquist Ocean, and later to that of the eastern branch of the Rheic Ocean. Furthermore, the relative paleopositions of the upper allochthon and the Iberian autochthon in northern Gondwana are discussed.
  • Item
    U-Pb chronometry of polymetamorphic high-pressure granulites: An example from the allochthonous terranes of the NW Iberian Variscan belt
    (4-D Framework of Continental Crust, 2007) Fernández Suárez, Javier; Arenas Martín, Ricardo; Abati Gómez, Jacobo; Martínez Catalán, José Ramón; Whitehouse, Martín J.; Jeffries, Teresa E.; Hatcher, Robert D.; Carlson, Marvin P.; McBride, John H.; Martínez Catalán, José Ramón
    Secondary ion mass spectrometry (SIMS) U-Pb geochronology of zircons from high-pressure granulite units within the allochthonous complexes of the northwestern Iberian Variscan belt illustrates the complexity of dating high-pressure events using the U-Pb chronometer. Zircons from four rocks belonging to the high-pressure (P), high-temperature (T) units were dated by SIMS. A gabbro body with preserved igneous texture within the Órdenes Complex high-P granulites yielded a crystallization age of ca. 515 Ma. A high-P mafic granulite within the same unit contained zircons that had U-Pb ages clustered around 387 Ma, and it preserved no record of events between the crystallization of precursor gabbros and the granulite event (sensu lato). A mafic high-P granulite from an equivalent structural unit in the Cabo Ortegal Complex contained abundant zircons that recorded crystallization of igneous protolith at 490–520 Ma and crystallization of new zircon from a melt phase starting at ca. 404 Ma, and zircons with 206Pb/238U ages between ca. 480 and 430 Ma that are interpreted to reflect partial Pb loss during the granulite-facies event. Bright luminescent cores in zircons from a leucosome pod within the outcrop area of the latter granulite yielded a mean age of 397 Ma, whereas dark U-rich rims in zircons from this leuco-some yielded a mean age of 390 Ma. These data, in conjunction with previous isotope dilution–thermal ionization mass spectrometry (ID-TIMS; zircon, monazite, titanite) U-Pb ages and 40Ar/39Ar dating of fabrics from rocks within the same units, point to a Silurian age for the high-P metamorphism. Timing of the peak pressure cannot be further constrained with available data because, in this case, we infer that the U-Pb system in zircon recorded only a segment of the retrograde path. We suggest that the high-P metamorphic event is related to the accretion and understacking of these units to the margin of Baltica or Laurentia following the closure of the Iapetus or Tornquist Oceans and concomitant opening of the Rheic Ocean.
  • Item
    Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events
    (Geology (Boulder Colo.), 1997) Martínez Catalán, José Ramón; Arenas Martín, Ricardo; Díaz García, Florentino; Abati Gómez, Jacobo
    The allochthonous terranes of northwest Iberia can be correlated with specific paleogeographic realms of the continental masses and intervening oceans involved in the Variscan collision. Assuming that the existing ophiolites represent the suture formed by the closure of the Rheic ocean, the units in the footwall to the suture correspond to the outer edge of the Gondwana continental margin, and the units in the hanging wall are interpreted as fragments of the conjugate margin, represented by the Meguma terrane. This correlation establishes a precise link between circum-Atlantic terranes, and makes it possible to draw a relatively simple scenario of the successive tectonothermal events recorded. Following the amalgamation of Avalon to Laurentia, the remaining outboard terranes underwent a progressive accretion to this continent that ended with the collision between Laurentia and Gondwana.
  • Item
    U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic
    (Gondwana research, 2010) Díez Fernández, Rubén; Martínez Catalán, José Ramón; Gerdex, Axel; Abati Gómez, Jacobo; Arenas Martín, Ricardo; Fernández Suárez, Javier
    LA-ICP-MS U–Pb ages of detrital zircons from eight siliciclastic samples from the Basal units of the Variscan allochthonous complexes of NW Iberia are used to establish the maximum depositional age and provenance of two tectonically-stacked metasedimentary sequences deposited on the outermost margin of Gondwana, and subsequently involved in the Rheic Ocean suture. Themaximumdepositional ages for the two sequences is latest Neoproterozoic and latest Cambrian, respectively. The age spectra are also used to discuss the paleoposition of the NWIberian basement on the continentalmargin of Gondwana prior to the opening of the Rheic Ocean, which is tentatively placed in northern Africa, between the West African and Saharan cratons. Based on similarities and differenceswith age data fromtheNWIberian autochthon and other allochthonous terranes involved inthe Rheic suture, the relative proportions of Mesoproterozoic zircons in both assemblages are proposed as markers of proximity to the eastern part of the West African craton during late Neoproterozoic and late Cambrian. The geodynamic processes that took place along this part of Gondwana during the late Neoproterozoic, late Cambrian and Early Ordovician are discussed in the light of the LA-ICP-MS results, as well as the sedimentological record, magmatic evolution and plate tectonic setting ofNWIberia. These processes are linked to late Neoproterozoic and Cambro-Ordovician subduction events beneath the northern Gondwanan margin.
  • Item
    Variscan exhumation of a subducted Paleozoic continental margin: The basal units of the Ordenes Complex, Galicia, NW Spain
    (Tectonics, 1996) Martínez Catalán, José Ramón; Arenas Martín, Ricardo; Díaz García, Florentino; Rubio Pascual, Francisco J.; Abati Gómez, Jacobo; Marquínez, Jorge
    A structural and metamorphic study was carried out in the basal units of the Ordenes Complex in Spain, thought to represent a subducted part of the Paleozoic margin of Gondwana. According to their metamorphic evolution, this part of the margin was subducted at the onset of the Variscan Orogeny, becoming part of an accretionary complex developed below a colliding element built previously. Variations in the PT conditions of the first high-pressure metamorphic event along the units indicate a polarity of the subduction to the west. Subsequent underthrusting of more continental material blocked the subduction and triggered the ascent and exhumation of the basal units, whereas the convergence continued. Recumbent folds and thrusts de ve loped along with successive normal detachments. Compressional and extensional structures were synchronous or alternated in time and together induced the thinning and tapering of the orogenic wedge and its lateral spreading. The unroofing took place locally under an inverted temperature gradient caused by a detachment which carried a part of the hot mantle wedge above the subduction zone over the subducted units.
  • Item
    The onset of the assembly of Pangaea in NW Iberia: Constraints on the kinematics of continental subduction
    (Gondwana research, 2012) Díez Fernández, Rubén; Martínez Catalán, José Ramón; Arenas Martín, Ricardo; Abati Gómez, Jacobo
    Excellent exposures of high-pressure rocks developed in a Variscan continental subduction system outcrop in NW Iberia. The kinematic criteria provided by the high-pressure metamorphic fabrics can be used to infer tectonic flow within the deep sections of this system. The dominant trend of the ductile flow is oblique to that of the orogenic belt, indicating oblique continental subduction. Its azimuth, a few tens of degrees clockwise relative to the orogenic trend, suggests dextral transpression between Gondwana and Laurussia during continental subduction that took place at the Upper Devonian, and provides a consistent kinematic reference for the earliest assembly of Pangaea in NW Iberia.
  • Item
    U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons
    (Journal of the Geological Society, 2012) Díez Fernández, Rubén; Martínez Catalán, José Ramón; Arenas Martín, Ricardo; Abati Gómez, Jacobo; Gerdex, Axel; Fernández Suárez, Javier
    Detrital U–Pb laser ablation inductively coupled plasma mass spectrometry zircon ages from six siliciclastic samples from the lower allochthon of NW Iberia are analysed to constrain their maximum sedimentation age and provenance, and to evaluate the connections to the adjacent tectonostratigraphic domains. Deposited in the external sections of the Gondwana platform, their maximum depositional age is latest Neoproterozoic (c. 560 Ma). Comparison of the age populations of the lower allochthon with those of the rest of the allochthonous and autochthonous units of NW Iberia suggests that the terranes located in the footwall of the Variscan suture should not be considered as exotic elements, but as contiguous pieces of the same continental margin transported onto the adjacent Gondwana mainland in Variscan times. The data are in agreement with the regional trend defined by the drop in Early Neoproterozoic and Mesoproterozoic zircon content upward in the tectonic pile, which had been previously proposed as a marker of proximity to the eastern part of the West African Craton. Based on the age spectra, the palaeoposition for the time of sedimentation is placed in northern Africa, between the West African and Saharan cratons. Particular attention is paid to the occurrence of an Early Neoproterozoic input, probably derived from the Pan-African Hoggar suture
  • Item
    P-T evolution of eclogites from the Agualada Unit (Ordenes Complex, northwest Iberian Massif, Spain) : Implications for crustal subduction
    (Lithos (Oslo. Print), 1997) Arenas Martín, Ricardo; Abati Gómez, Jacobo; Martínez Catalán, José Ramón; Díaz García, Florentino; Rubio Pascual, Francisco J.
    Eklogite lenses in the Agualada Unit (western Ordenes Complex, Spain) contain the peak mineral assemblage garnet (prograde rim: Alm = 48 mol%, Ptp = 30 mol%), omphacite (Jd max = 36 mol%), quartz, rutile and rare zoisite, which equilibrated at T = 700°C and P > 12-14 kbar. Garnet shows discontinuous growth zoning, with a pyrope-poor intermediate zone (Alm = 51 mol%, Prp = 10 mol%) between a core zone where pyrope is slightly higher (Aim = 46 mol%, Prp = 16 mol%) and areas just inward from the rims where the maximum pyrope contents (Alm = 48 mol%, Prp = 30 mol%) are recorded. In atoll interiors, garnet contains inclusions of a first generation of omphacite (Jd max = 40 mol%). This omphacite is replaced in the matrix by a second generation (Jd max = 36 mol%) with higher Fe/Fe + Mg ratio. The compositions of garnet and omphacite suggest a complex syneclogitic tectonothermal evolution for the Agualada Unit, characterized by: (1) eclogite-facies metamorphism (T = 585°C P > 12-13 kbar), followed by (2) cooling during a slight decompression (T = 5OOºC, P > 1 l- 12 kbar), and (3) a final increase in P and T to form the garnet rim-matrix omphacite mineral assemblage. The Agualada Unit is part of a subduction complex which affected the Gondwana margin at the beginning of the Variscan cycle. The P-T evolution of the Agualada eclogites is closely related to the structural evolution of the accretionary complex and the whole erogenic wedge. The cooling event recorded by the Agualada eclogites may have resulted from the accretion of a new colder crustal slice under the unit, whereas the final progradation reflects the emplacement of the Agualada Unit directly under the mantle wedge. This evolution fits well with previously presented theoretical models, both for the tectonothermal evolution of accretionary complexes and for the dynamic evolution of erogenic wedges. P-T paths such as the one for the Agualada Unit eclogites, probably reflect a prolonged structural evolution. Although evidently rarely preserved, such paths are probably the rule rather than the exception during plate convergence.