Person:
Vargas Balbuena, Javier

Loading...
Profile Picture
First Name
Javier
Last Name
Vargas Balbuena
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Óptica
Area
Optica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Deflectometric method for the measurement of user power for ophthalmic lenses
    (Applied Optics, 2010) Quiroga Mellado, Juan Antonio; Gómez Pedrero, José Antonio; Alonso Fernández, José; Vargas Balbuena, Javier
    This paper presents a deflectometric technique to measure the power of an ophthalmic lens as perceived by the user. It is based on a calibrated camera acting as a pinhole in order to measure ray deflection along the same path as the visual axis when the lens is held in front of the eye. We have analyzed numerically the accuracy of our technique, and it has been compared experimentally with a commercial "lens mapper" and with the real user power calculated from the measured topography of the lens surfaces to state the reliability and accuracy of the presented technique.
  • Item
    Incremental PCA algorithm for fringe pattern demodulation
    (Optics express, 2022) Gómez Pedrero, José Antonio; Estrada, Julio César; Alonso Fernández, José; Quiroga Mellado, Juan Antonio; Vargas Balbuena, Javier
    This work proposes a new algorithm for demodulating fringe patterns using principal component analysis (PCA). The algorithm is based on the incremental implantation of the singular value decomposition (SVD) technique for computing the principal values associated with a set of fringe patterns. Instead of processing an entire set of interferograms, the proposed algorithm proceeds in an incremental way, processing sequentially one (as minimum) interferogram at a given time. The advantages of this procedure are twofold. Firstly, it is not necessary to store the whole set of images in memory, and, secondly, by computing a phase quality parameter, it is possible to determine the minimum number of images necessary to accurately demodulate a given set of interferograms. The proposed algorithm has been tested for synthetic and experimental in ter ferograms showing a good performance. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
  • Item
    Robust weighted principal components analysis demodulation algorithm for phase-shifting interferometry
    (Optics express, 2021) Vargas Balbuena, Javier; Wang, Shuoyu; Gómez Pedrero, José Antonio; Estrada, Julio César
    We present an asynchronous phase-shifting demodulation approach based on the principal component analysis demodulation method that is robust to typical problems as turbulence, vibrations, and temporal instabilities of the optical setup. The method brings together a two-step and a phase-shifting asynchronous demodulation method to share their benefits while reducing their intrinsic limitations. Thus, the proposed approach is based on a two-fold process. First, the modulating phase is estimated from a two-step demodulation approach. Second, this information is used to compute weights to each phase-shifted pattern of the interferogram sequence, which are used in a novel weighted principal component demodulation approach. The proposed technique has been tested with simulated and real interferograms affected by turbulence and vibrations providing very satisfactory results in challenging cases.
  • Item
    Enhancement of Cryo-EM maps by a multiscale tubular filter
    (Optics express, 2022) Vargas Balbuena, Javier; Gómez Pedrero, José Antonio; Quiroga Mellado, Juan Antonio; Alonso Fernández, José
    We present an approach to enhance cryo-electron microscopy (cryo-EM) postprocessed maps based on a multiscale tubular filter. The method determines a tubularness measure locally by the analysis of the eigenvalues of the Hessian matrix. This information is used to enhance elongated local structures and to attenuate blob-like and plate-like structures. The approach, thus, introduces a priori information in the reconstructions to improve their interpretability and analysis at high-resolution. The proposed method has been tested with simulated and real cryo-EM maps including recent reconstructions of the SARS-CoV-2. Our results show that our methods can improve obtained reconstructions.