Person:
Recio Visedo, María Paz

Loading...
Profile Picture
First Name
María Paz
Last Name
Recio Visedo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Fisiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Role of Calcitonin Gene-Related Peptide in Inhibitory Neurotransmission to the Pig Bladder Neck
    (2011) Martínez-Sáenz, Ana ; Recio Visedo, María Paz; Orensanz, Luis M. ; Leite Fernandes, Vitor Samuel; Martínez Sainz, María Del Pilar; Bustamante, Salvador ; Carballido, Joaquín ; García-Sacristán, Albino ; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Purpose: We studied the role of calcitonin gene-related peptide in nonadrenergic, noncholinergic neurotransmission to the pig bladder neck. Materials and Methods: We used immunohistochemical techniques to determine the distribution of calcitonin gene-related peptide immunoreactive fibers as well as organ baths for isometric force recording. We investigated relaxation due to endogenously released or exogenously applied calcitonin gene-related peptide in urothelium denuded phenylephrine precontracted strips treated with guanethidine, atropine and NG-nitro-L-arginine to block noradrenergic neurotransmission, muscarinic receptors and nitric oxide synthase, respectively. Results: Rich calcitonin gene-related peptide immunoreactive innervation was found penetrating through the adventitia and distributed in the suburothelial and muscle layers. Numerous, variable size, varicose calcitonin gene-related peptide immunopositive terminals were seen close below the urothelium. In the muscle layer calcitonin gene-related peptide immunopositive nerves usually appeared as varicose terminals running along muscle fibers. Electrical field stimulation (2 to 16 Hz) and exogenous calcitonin gene-related peptide (0.1 nM to 0.3 μM) evoked frequency and concentration dependent relaxation, respectively. Nerve responses were potentiated by capsaicin, decreased by calcitonin gene-related peptide (8–37) and abolished by tetrodotoxin, capsaicin sensitive primary afferent blockers, calcitonin gene-related peptide receptors and neuronal voltage gated Na+ channels. Calcitonin gene-related peptide-induced relaxation was potentiated by the neuronal voltage gated Ca2+ channels blocker ω-conotoxin-GVIA and decreased by calcitonin gene-related peptide (8–37). Calcitonin gene-related peptide relaxation was not modified by blockade of endopeptidases, nitric oxide synthase, guanylyl cyclase and cyclooxygenase. Conclusions: Results suggest that calcitonin gene-related peptide is involved in the nonadrenergic, noncholinergic inhibitory neurotransmission of the pig bladder neck, producing relaxation through neuronal and muscle calcitonin gene-related peptide receptors. Nitric oxide/cyclic guanosine monophosphate and cyclooxygenase pathways do not seem to be involved in such responses.
  • Item
    Eritrocitos, glóbulos rojos o hematíes
    (Fisiología Veterinaria, 2018) Recio Visedo, María Paz; García Sacristán, Albino
  • Item
    Médula adrenal
    (Fisiología Veterinaria, 2018) Recio Visedo, María Paz; García Sacristán, Albino