Person:
León Martínez, Rafael

Loading...
Profile Picture
First Name
Rafael
Last Name
León Martínez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Química en Ciencias Farmacéuticas
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 12
  • Item
    Compounds derived from 3-Alkylamino-1H-indole acrylate, and the use thereof in the treatment of neurodegenerative diseases.
    (2015) León Martínez, Rafael; Buendia Abaitua, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro Ros, Isabel; López Vivo, Alicia; Egea Máiquez, Francisco Javier; García López, Manuel; García García, Juan Antonio; Fundacioó para la investigación biomédica del Hospital Universitario de La Princesa
    The inventions relates to the methods for producing derivatives of 3-alkylamino-1-H indole acrylate (I) with transcription factor Nrf2-inducing activity, free radical scavenging activity and neuroprotective ability. The invention also relates to the use of derivatives according to the invention for the treatment of diseases, the pathogenesis of which involves oxidative stress, or diseases involving the deregulation of the activity of phase II genes activated by the factor Nrf2 such as Alzheimer´s disease, Parkinson´s disease, Huntington´s disease, multiple sclerosis, ictus or amyotrophic lateral sclerosis.
  • Item
    ITH14001, a CGP37157-Nimodipine Hybrid Designed to Regulate Calcium Homeostasis and Oxidative Stress, Exerts Neuroprotection in Cerebral Ischemia
    (ACS Chemical Neuroscience, 2016) Buendia, Izaskun; Tenti, Giammarco; Michalska Dziama, Patrycja; Méndez-López, Iago; Luengo, Enrique; Satriani, Michele; Padín-Nogueira, Fernando; López, Manuela G.; Ramos García, María Teresa; García, Antonio G.; Menéndez Ramos, José Carlos; León Martínez, Rafael
    During brain ischemia, oxygen and glucose deprivation induces calcium overload, extensive oxidative stress, neuroinflammation, and, finally, massive neuronal loss. In the search of a neuroprotective compound to mitigate this neuronal loss, we have designed and synthesized a new multitarget hybrid (ITH14001) directed at the reduction of calcium overload by acting on two regulators of calcium homeostasis; the mitochondrial Na+/Ca2+ exchanger (mNCX) and L-type voltage dependent calcium channels (VDCCs). This compound is a hybrid of CGP37157 (mNCX inhibitor) and nimodipine (L-type VDCCs blocker), and its pharmacological evaluation revealed a moderate ability to selectively inhibit both targets. These activities conferred concentration-dependent neuroprotection in two models of Ca2+ overload, such as toxicity induced by high K+ in the SH-SY5Y cell line (60% protection at 30 μM) and veratridine in hippocampal slices (26% protection at 10 μM). It also showed neuroprotective effect against oxidative stress, an activity related to its nitrogen radical scavenger effect and moderate induction of the Nrf2-ARE pathway. Its Nrf2 induction capability was confirmed by the increase of the expression of the antioxidant and anti-inflammatory enzyme heme-oxygenase I (3-fold increase). In addition, the multitarget profile of ITH14001 led to anti-inflammatory properties, shown by the reduction of nitrites production induced by lipopolysaccharide in glial cultures. Finally, it showed protective effect in two acute models of cerebral ischemia in hippocampal slices, excitotoxicity induced by glutamate (31% protection at 10 μM) and oxygen and glucose deprivation (76% protection at 10 μM), reducing oxidative stress and iNOS deleterious induction. In conclusion, our hybrid derivative showed improved neuroprotective properties when compared to its parent compounds CGP37157 and nimodipine.
  • Item
    Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease
    (Scientific Reports, 2017) Gameiro, Isabel; Michalska Dziama, Patrycja; Tenti, Giammarco; Cores Esperón, Ángel; Buendia, Izaskun; Rojo, Ana I.; Georgakopoulos, Nikolaos D.; López, Manuela G.; Hernández, Jesús M.; Ramos García, María Teresa; Wells, Geoffrey; Cuadrado, Antonio; Menéndez Ramos, José Carlos; León Martínez, Rafael
    The formation of neurofibrillary tangles (NFTs), oxidative stress and neuroinflammation have emerged as key targets for the treatment of Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder. These pathological hallmarks are closely related to the over-activity of the enzyme GSK3β and the downregulation of the defense pathway Nrf2-EpRE observed in AD patients. Herein, we report the synthesis and pharmacological evaluation of a new family of multitarget 2,4-dihydropyrano[2,3-c]pyrazoles as dual GSK3β inhibitors and Nrf2 inducers. These compounds are able to inhibit GSK3β and induce the Nrf2 phase II antioxidant and anti-inflammatory pathway at micromolar concentrations, showing interesting structure-activity relationships. The association of both activities has resulted in a remarkable anti-inflammatory ability with an interesting neuroprotective profile on in vitro models of neuronal death induced by oxidative stress and energy depletion and AD. Furthermore, none of the compounds exhibited in vitro neurotoxicity or hepatotoxicity and hence they had improved safety profiles compared to the known electrophilic Nrf2 inducers. In conclusion, the combination of both activities in this family of multitarget compounds confers them a notable interest for the development of lead compounds for the treatment of AD.
  • Item
    Compuestos derivados de acrilato de 3-alquilamino-1H-indolilo y su uso en el tratamiento de las enfermeadades neurodegenerativas
    (2016) León Martínez, Rafael; Buendia Abaitua, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro Ros, Isabel; Egea Máiquez, Franisco Javier; García Lopez, Manuela; García García, Juan Antonio; Fundacion para la investigacion biomedica del Hospital Universitario de La Princesa
    The invent relates to the methods for producing derivates of 3-alkylamino-1H-indole acrylate(I) with transcription factor Nrf2-inducing activity, free radical scavenging activity and neuroprotective ability. The invention also relates to the use of derivatives according to the invention of treatment of diseases, the pathogenesis of which involves oxidative stress, or diseases involving the deregulationof the activity of phase II genes activated by the factor Nrf2, such as Alzheimer´s disease, Parkinson´s disease, Huntington´s disease, multiple sclerosis, ictus or amyotrophic lateral sclerosis.
  • Item
    Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux
    (Journal of Pineal Research, 2019) Luengo, Enrique; Buendia, Izaskun; Fernández-Mendívil, Cristina; Negredo, Pilar; Michalska Dziama, Patrycja; Hernández-García, Borja; Sánchez-Ramos, Cristina; Bernal, Juan A.; Ikezu, Tsuneya; López, Manuela G.; León Martínez, Rafael
    Alterations in autophagy are increasingly being recognized in the pathogenesis of proteinopathies like Alzheimer's disease (AD). This study was conducted to evaluate whether melatonin treatment could provide beneficial effects in an Alzheimer model related to tauopathy by improving the autophagic flux and, thereby, prevent cognitive decline. The injection of AAV-hTauP301L viral vectors and treatment/injection with okadaic acid were used to achieve mouse and human ex vivo, and in vivo tau-related models. Melatonin (10 μmol/L) impeded oxidative stress, tau hyperphosphorylation, and cell death by restoring autophagy flux in the ex vivo models. In the in vivo studies, intracerebroventricular injection of AAV-hTauP301L increased oxidative stress, neuroinflammation, and tau hyperphosphorylation in the hippocampus 7 days after the injection, without inducing cognitive impairment; however, when animals were maintained for 28 days, cognitive decline was apparent. Interestingly, late melatonin treatment (10 mg/kg), starting once the alterations mentioned above were established (from day 7 to day 28), reduced oxidative stress, neuroinflammation, tau hyperphosphorylation, and caspase-3 activation; these observations correlated with restoration of the autophagy flux and memory improvement. This study highlights the importance of autophagic dysregulation in tauopathy and how administration of pharmacological doses of melatonin, once tauopathy is initiated, can restore the autophagy flux, reduce proteinopathy, and prevent cognitive decline. We therefore propose exogenous melatonin supplementation or the development of melatonin derivatives to improve autophagy flux for the treatment of proteinopathies like AD.
  • Item
    New melatonin–cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection
    (Future Medicinal Chemistry, 2015) Buendia, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro, Isabel; Egea, Javier; Abril, Sheila; López, Alicia; González-Lafuente, Laura; G. López, Manuela; León Martínez, Rafael
    Neurodegenerative diseases share many pathological pathways, such as abnormal protein aggregation, mitochondrial dysfunction, extensive oxidative stress and neuroinflammation. Cells have an intrinsic mechanism of protection, the Nrf2 transcriptional factor, known as the master regulator of redox homeostasis. Results: Based on the common features of these diseases we have designed a multi-target hybrid structure derived from melatonin and ethyl cinnamate. The obtained derivatives were Nrf2 inducers and potent-free radical scavengers. These new compounds showed a very interesting neuroprotective profile in several in vitro models of oxidative stress, Alzheimer's disease and brain ischemia. Conclusion: We have designed a new hybrid structure with complementary activities. We have identified compound 5h as an interesting Nrf2 inducer, very potent antioxidant and neuroprotectant.
  • Item
    Novel Multitarget Hybrid Compounds for the Treatment of Alzheimer’s Disease
    (Current Topics in Medicinal Chemistry, 2016) Michalska Dziama, Patrycja; Buendia, Izaskun; Almale Del Barrio, Laura; León Martínez, Rafael
    Alzheimer's disease (AD) is the most prevalent among the aging diseases known as neurodegenerative disorders. Drug design programs over the last two decades were mainly based on the cholinergic, the amyloid or the tau hypothesis. However, none of the new drugs have a real impact on the outcome of the disease. The complex nature of AD has led to new approaches for drug development programs, the multitarget drug design hypothesis. Based on this hypothesis, the generation of multitarget hybrid compounds from previously known active molecules has been one of the most widely used to obtain new candidates for the future treatment of AD. Here, we summarize recent developments based on the hybridization hypothesis to obtain a potential clinical candidate for AD.
  • Item
    Compounds derived from 3-Alkylamino-1H-indole acrylate, and the use thereof in the treatment of neurodegenerative diseases.
    (2015) León Martínez, Rafael; Buendia Abaitua, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro Ros, Isabel Marina; López Vivo, Alicia; Egea Máiquez, Francisco Javier; García López, Manuela; García García, Juan Antonio; Fundación para la investigación biomédica del Hospital Universitario de La Princesa
    The inventions relates to the methods for producing derivatives of 3-alkylamino-1-H indole acrylate (I) with transcription factor Nrf2-inducing activity, free radical scavenging activity and neuroprotective ability. The invention also relates to the use of derivatives according to the invention for the treatment of diseases, the pathogenesis of which involves oxidative stress, or diseases involving the deregulation of the activity of phase II genes activated by the factor Nrf2 such as Alzheimer´s disease, Parkinson´s disease, Huntington´s disease, multiple sclerosis, ictus or amyotrophic lateral sclerosis.
  • Item
    Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models
    (Neuropharmacology, 2015) Buendia Abaitua, Izaskun; Gómez Rangel, Vanessa; Gónzalez Lafuente, Laura; Parada Pérez, Esther; León Martínez, Rafael; Gameiro Ros, Isabel Marina; Michalska Dziama, Patrycja; Laudon, Moshe; Egea Máiquez, Francisco Javier; García López, Manuela
    Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2.
  • Item
    The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators
    (Journal of Medicinal Chemistry, 2016) Benchekroun, Mohamed; Romero Hernández, Alejandro; Egea, Javier; León Martínez, Rafael; Michalska Dziama, Patrycja; Buendía, Izaskun; Jimeno, María Luisa; Jun, Daniel; Janockova, Jana; Sepsova, Vendula; Soukup, Ondrej; Bautista-Aguilera, Oscar M.; Refouvelet, Bernard; Ouari, Olivier; Marco Contelles, José Luis; Ismaili, Lhassane
    Novel multifunctional tacrines for Alzheimer’s disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.