Person:
Muñoz Martín, Alfonso

Loading...
Profile Picture
First Name
Alfonso
Last Name
Muñoz Martín
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Geodinámica, Estratigrafía y Paleontología
Area
Geodinámica Interna
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Survey explores active tectonics in Northeastern Caribbean
    (Eos, Transactions American Geophysical Union, 2005) Carbó Gorosabel, Andrés; Córdoba Barba, Diego; Martín Dávila, José; Ten Brink, Uri S.; Herranz Araújo, Pedro; Von Hilldebrant, Christa; Payero, Juan; Muñoz Martín, Alfonso; Pazos, Antonio; Catalán, Manuel; Granja Bruña, José Luis; Gómez Ballesteros, María
    There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al, 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary. Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies. The cruise collected multibeam bathymetry, gravity, magnetic, high-resolution seismic, deep seismic sounding, and multichannel seismic reflection data, which are currently being processed and interpreted (Table 1). In early November 2005, 10 ocean-bottom seismometers (OBS) that had been deployed northeast of Puerto Rico and the Virgin Islands (Figure 1) during the cruise were recovered. These OBS recorded data during the cruise and the local seismicity between April and October 2005.
  • Item
    Upper crustal structure of Deception Island area (Bransfield Strait, Antarctica) from gravity and magnetic modelling
    (Antarctic Science, 2005) Muñoz Martín, Alfonso; Catalán Morollón, Manuel; Martín Dávila, José; Carbó Gorosabel, Andrés
    Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show welldefined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.
  • Item
    Relationship between the fractal dimension anisotropy of the spatial faults distribution and the paleostress fields on a Variscan granitic massif (Central Spain): the F-parameter
    (Journal of Structural Geology, 2005) Pérez López, Raúl; Paredes, Carlos; Muñoz Martín, Alfonso
    The spatial distribution of faults is usually described as a fractal set characterised by the fractal dimension. In this work, we have filtered fault patterns interpreted from digital elevation models, aerial photographs and field maps, by using structural geological parameters of the stress ellipsoid (stress tensor direction and stress ratio R0) and age of deformation. From these filtered structural maps, we have obtained the fractal dimension associated with the fracture patterns developed during Permo-Triassic and Alpine tectonic events on a Variscan granitic massif located in the Spanish Central System. Oriented fractal dimensions were calculated on several transects crossing the fault-filtered maps. The fractal dimension (D), calculated by 1-D box-counting, describes an ellipse on a polar plot with the short axis as the minimum value (DHmin) and the long axis as the maximum value (DHmax) of the fractal dimensions measured. From these analyses, we have defined the F-parameter as a function of the maximum value, minimum value and vertical value of fractal dimension (Dz), FZ(DzKDHmin)/(DHmaxK DHmin). Finally we have established, from a local scale analysis, a perpendicular relationship between the principal axes of the ellipse of the fractal spatial anisotropy of fractures and the principal axes of the stress tensor (sHmax, sHmin and sz) that generates this dynamic pattern of fractures. Furthermore, the F-parameter and the stress ratio R0 are equivalents and, applied in this area, both show a triaxial extension.
  • Item
    Geomagnetic secular variation of Bransfield Strait (Western Antarctica) from analysis of marine crossover data
    (Geophysical journal international, 2005) Catalán, Manuel; Agudo, Luis Miguel; Muñoz Martín, Alfonso
    Tracking the secular variation of the geomagnetic field in the past is severely limited in some cases by factors relating to the remoteness of the sites. This is maximal in the Antarctic where the remote location and severe climate lead to logistic limitations that make it difficult to keep a continuous record of magnetic field variations. From the magnetic information available from historical marine expeditions, it is possible to infer this time-varying component from the comparison of readings at crossovers. This study focuses on this technique, discusses the impact of the different error sources and proposes a simple mathematical procedure to infer average secular variation rates. The result is validated by comparing it with local data from the Arctowski and Livingston magnetic observatories, sited in the area. Additionally, using a high-quality data set from a local area in the neighbourhood of Deception Island, we have detected a systematic distribution in its secular variation. This dichotomy has been interpreted in terms of a volcano-magnetic signal. This fact and the nature of its principal mechanisms are analysed and discussed.
  • Item
    Cálculo de magnitudes de esfuerzos mediante elementos finitos en el macizo de El Berrocal (Sistema Central Español)
    (Boletín geológico y minero, 2005) Martín Velázquez, S.; Vicente Muñoz, Gerardo de; Elorza, F.J.; Muñoz Martín, Alfonso
    Se ha analizado la distribución de las magnitudes de esfuerzos actuales mediante el método de los elementos finitos a lo largo de una sección NO-SE transversal al macizo granítico de El Berrocal (Sistema Central Español), en la que se incluye la superficie topográfica, las variaciones litológicas y las cargas tectónicas compresivas. La estructura geológica profunda se ha obtenido a partir de una modelización gravimétrica. En un modelo sencillo, con una reología media cortical y una topografía plana, se han establecido previamente las condiciones de contorno y las propiedades mecánicas de los materiales necesarias para reproducir estados de esfuerzos litostáticos y tectónicos con elementos finitos. Aplicando una carga vertical gravitacional y una carga horizontal litostática, sólo se obtienen esfuerzos verticales iguales a los horizontales si el coeficiente de Poisson es de 0,49. Cuando se incluye además una carga tectónica se consigue un estado de esfuerzos tectónicos en régimen compresivo. Sin embargo, al modelizar el caso real del macizo de El Berrocal, la carga topográfica produce una desviación de los esfuerzos respecto al estado litostático y para obtener un régimen compresivo hay que aplicar como mínimo un empuje tectónico de 13 MPa.