Person:
Arroyo De Dompablo, María Elena

Loading...
Profile Picture
First Name
María Elena
Last Name
Arroyo De Dompablo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Inorgánica
Area
Química Inorgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Electrochemical intercalation of Calcium and Magnesium in TiS2: fundamental studies related to multivalent battery applications
    (2018) Tchitchekova, Deyana S.; Ponrouch, Alexandre; Verrelli, Roberta; Broux, Thibault; Frontera, Carlos; Sorrentino, Andrea; Barde, Fanny; Biskup Zaja, Nevenko; Arroyo De Dompablo, María Elena; Palacín, M. Rosa
    A comparative study of the electrochemical intercalation of Ca2+ and Mg2+ in layered TiS2 using alkylcarbonate-based electrolytes is reported, and for the first time, reversible electrochemical Ca2+ insertion is proved in this compound using both X-ray diffraction and differential absorption X-ray tomography at the Ca L-2 edge. Different new phases are formed upon M2+ insertion that are structurally characterized, their amount and composition being dependent on M2+ and the experimental conditions. The first phase formed upon reduction is found to be the result of an ion-solvated intercalation mechanism, with solvent molecule(s) being cointercalated with the M2+ cation. Upon further reduction, new non-cointercalated calcium-containing phases seem to form at the expense of unreacted TiS2. The calculated activation energy barriers for Ca2+ migration in TiS2 (0.75 eV) are lower than those previously reported for Mg (1.14 eV) at the dilute limit and within the CdI2 structural type. DFT results indicate that the expansion of the interlayer space lowers the energy barrier and favors a different pathway for Ca2+ migration.
  • Item
    Elucidation of the redox activity of Ca2MnO3. 5 and CaV2O4 in calcium batteries using operando XRD: charge compensation mechanism and reversibility
    (Energy Storage Materials, 2022) Black, Ashley; Frontera, Carlos; Torres, Arturo; Recio-Poo, Miguel; Rozier, Patrick; Forero-Saboya, juan; Faith, Francois; Urones-Garrote, Esteban; Arroyo De Dompablo, María Elena; Palacin, Maria Rosa
    Ca2MnO3.5 and CaV2O4 were found to be potentially interesting as positive electrode materials for calcium metal-based high-energy density batteries with DFT-predicted average voltages of 3.7 V and 2.5 V and energy barriers for Ca migration of 1.1 eV and 0.6 eV, respectively. Both compounds were prepared by solid state reaction under reducing atmospheres. Optimum conditions to achieve Ca2MnO3.5 comprised the reduction of Ca2MnO4 under NH3 gas at 420⁰C with a flow rate of 1200 ml/min while CaV2O4 was achieved by reduction of CaV2O6 at 700 ⁰C under H2 flow. Electrochemical oxidation of Ca2MnO3.5 in lithium or calcium cells resulted in the formation of an orthorhombic phase with cell parameter (a= 5.2891(1), b= 10.551(2), c= 12.1422(1)). Operando synchrotron radiation diffraction experiments indicate that the charge compensation mechanism is not related to Ca2+ extraction but to intercalation of F− (originated from electrolyte salt decomposition) into the anion vacancy position, as confirmed by EELS and EDS. This process was found to be irreversible. In the case of CaV2O4, oxidation induces the electrochemical extraction of calcium with the formation of an orthorhombic phase (space group Pbnm) with cell parameters a = 10.72008(9) Å, b = 9.20213(2) Å and c = 2.89418(3) Å. The process was also investigated via operando synchrotron radiation diffraction, with the oxidized phase being found to reintercalate Ca2+ ions upon reduction, with the formation of a solid solution. Preliminary cycling tests reveals a decrease in the polarization after the first cycle and call for further investigation of this system.
  • Item
    Appraisal of calcium ferrites as cathodes for calcium rechargeable batteries: DFT, synthesis, characterization and electrochemistry of Ca 4 Fe 9 O 17
    (Dalton Transactions, 2020) Black, Ashley; Torres, Arturo; Frontera, Carlos; Palacin, Rosa; Arroyo De Dompablo, María Elena
    Sustainability combined with high energy density prospects makes Fe-based oxides attractive as cathodes for calcium rechargeable batteries. This work presents a DFT evaluation of the CaFe2+nO4+n (0 < n < 3) family, for which both the average intercalation voltage and the theoretical specific capacity decrease with the increasing n value. The term n = 1/4, Ca4Fe9O17, meets the most appealing characteristics: a calculated average voltage of 4.16 V, a theoretical specific capacity of 230 mA h g−1 and the lowest energy barrier for Ca migration so far predicted for an existing oxide (0.72 eV). To overcome the previously reported synthesis difficulties, we employed a novel synthesis procedure in sealed quartz tubes followed by quenching in water. The XRD and SAED patterns of the prepared Ca4Fe9O17 powder reveal a certain degree of stacking defects along the c axis. Attempts to deinsert Ca ions from Ca4Fe9O17 by chemical means (NO2BF4 in ACN) and in electrochemical Ca cells were unsuccessful, although some hints of oxidation are observed in Li cells with the LP30 electrolyte. The suitability of Ca4Fe9O17 as a Ca cathode is pending further studies utilizing Ca-electrolytes with high anodic stability.