Person:
Martín Carmona, María Antonia

Loading...
Profile Picture
First Name
María Antonia
Last Name
Martín Carmona
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Química en Ciencias Farmacéuticas
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Bisavenathramide Analogues as Nrf2 Inductors and Neuroprotectors in In Vitro Models of Oxidative Stress and Hyperphosphorylation
    (Antioxidants, 2021) Cores Esperón, Ángel; Abril Comesaña, Sheila; Michalska Dziama, Patrycja; Duarte, Pablo; Olives Barba, Ana Isabel; Martín Carmona, María Antonia; Villacampa Sanz, Mercedes; León Martínez, Rafael; Menéndez Ramos, José Carlos
    Oxidative stress is crucial to the outbreak and advancement of neurodegenerative diseases and is a common factor to many of them. We describe the synthesis of a library of derivatives of the 4-arylmethylen-2-pyrrolin-5-one framework by sequential application of a three-component reaction of primary amines, β-dicarbonyl compounds, and α-haloketones and a Knoevenagel condensation. These compounds can be viewed as cyclic amides of caffeic and ferulic acids, and are also structurally related to the bisavenanthramide family of natural antioxidants. Most members of the library showed low cytotoxicity and good activity as inductors of Nrf2, a transcription factor that acts as the master regulator of the antioxidant response associated with activation of the antioxidant response element (ARE). Nrf2-dependent protein expression was also proved by the significant increase in the levels of the HMOX1 and NQO1 proteins. Some compounds exerted neuroprotective properties in oxidative stress situations, such as rotenone/oligomycin-induced toxicity, and also against protein hyperphosphorylation induced by the phosphatase inhibitor okadaic acid. Compound 3i, which can be considered a good candidate for further hit-to-lead development against neurodegenerative diseases due to its well-balanced multitarget profile, was further characterized by proving its ability to reduce phosphorylated Tau levels.
  • Item
    Bifunctional carbazole derivatives for simultaneous therapy and fluorescence imaging in prion disease murine cell models
    (European Journal of Medicinal Chemistry, 2022) Staderini, Matteo; Vanni, Silvia; Colini Baldeschi, Arianna; Zattoni, Marco; Celauro, Luigi; Ferracin, Chiara; Bistaffa, Edoardo; Moda, Fabio; Pérez, Daniel I.; Martínez, Ana; Martín Carmona, María Antonia; Martín Cámara, Olmo; Cores Esperón, Ángel; Bianchini, Giulia; Kammerer, Robert; Menéndez Ramos, José Carlos; Legname, Giuseppe; Bolognesi, Maria Laura
    Prion diseases are characterized by the self-assembly of pathogenic misfolded scrapie isoforms (PrPSc) of the cellular prion protein (PrPC). In an effort to achieve a theranostic profile, symmetrical bifunctional carbazole derivatives were designed as fluorescent rigid analogues of GN8, a pharmacological chaperone that stabilizes the native PrPC conformation and prevents its pathogenic conversion. A focused library was synthesized via a four- step route, and a representative member was confirmed to have native fluorescence, including a band in the near- infrared region. After a cytotoxicity study, compounds were tested on the RML-infected ScGT1 neuronal cell line, by monitoring the levels of protease-resistant PrPSc. Small dialkylamino groups at the ends of the molecule were found to be optimal in terms of therapeutic index, and the bis-(dimethylaminoacetamido)carbazole derivative 2b was selected for further characterization. It showed activity in two cellClines infected with the mouse-adapted RML strain (ScGT1 and ScN2a). Unlike GN8, 2b did not affect PrP levels, which represents a potential advantage in terms of toxicity. Amyloid Seeding Assay (ASA) experiments showed the capacity of 2b to delay the aggregation of recombinant mouse PrP. Its ability to interfere with the amplification of the scrapie RML strain by Protein Misfolding Cyclic Amplification (PMCA) was shown to be higher than that of GN8, although 2b did not inhibit the amplification of human vCJD prion. Fluorescent staining of PrPSc aggregates by 2b was confirmed in living cells. 2b emerges as an initial hit compound for further medicinal chemistry optimization towards strain- independent anti-prion compounds.
  • Item
    Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation
    (Pharmaceutics, 2021) González Ruiz, Víctor; Cores Esperón, Ángel; Martín Cámara, Olmo; Serrano Orellana, Karen; Michalska Dziama, Patrycja; Cervera Carrascón, Víctor Enrique; León Martínez, Rafael; Olives Barba, Ana Isabel; Martín Carmona, María Antonia; Menéndez Ramos, José Carlos
    The use of cyclodextrins as drug nano-carrier systems for drug delivery is gaining importance in the pharmaceutical industry due to the interesting pharmacokinetic properties of the resulting inclusion complexes. In the present work, complexes of the anti-cancer alkaloids camptothecin and luotonin A have been prepared with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. These cyclodextrin complexes were characterized by nuclear magnetic resonance spectroscopy (NMR). The variations in the 1H-NMR and 13C-NMR chemical shifts allowed to establish the inclusion modes of the compounds into the cyclodextrin cavities, which were supported by docking and molecular dynamics studies. The efficiency of the complexation was quantified by UV-Vis spectrophotometry and spectrofluorimetry, which showed that the protonation equilibria of camptothecin and luotonin A were drastically hampered upon formation of the inclusion complexes. The stabilization of camptothecin towards hydrolysis inside the cyclodextrin cavity was verified by the quantitation of the active lactone form by reverse phase liquid chromatography fluorimetric detection, both in basic conditions and in the presence of serum albumin. The antitumor activity of luotonin A and camptothecin complexes were studied in several cancer cell lines (breast, lung, hepatic carcinoma, ovarian carcinoma and human neuroblastoma) and an enhanced activity was found compared to the free alkaloids, particularly in the case of hydroxypropyl-β-cyclodextrin derivatives. This result shows that the cyclodextrin inclusion strategy has much potential towards reaching the goal of employing luotonin A or its analogues as stable analogues of camptothecin.