Person:
Barroso Arévalo, Sandra

Loading...
Profile Picture
First Name
Sandra
Last Name
Barroso Arévalo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Sanidad Animal
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 18
  • Item
    The Role of Interleukine-10 and Interferon-γ as Potential Markers of the Evolution of African Swine Fever Virus Infection in Wild Boar
    (Pathogens, 2021) Barroso Arévalo, Sandra; Sánchez-Vizcaíno Rodríguez, José Manuel; Cadenas Fernández, Estefanía; Barasona García-Arévalo, José Ángel
    African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.
  • Item
    Neuropathological lesions in intravenous BCG-stimulated K18-hACE2 mice challenged with SARS-CoV-2
    (Veterinary Research, 2024) Sánchez Morales, Lidia; Porras, Néstor; García-Seco Romero, María Teresa; Pérez Sancho, Marta; Cruz López, Fátima; Chinchilla, Blanca; Barroso Arévalo, Sandra; Diaz Frutos, Marta; Buendía, Aránzazu; Moreno, Inmaculada; Briones Dieste, Víctor; Risalde, María de los Ángeles; de la Fuente, José; Juste, Ramón; Garrido, Joseba; Balseiro, Ana; Gortázar, Christian; Rodríguez Bertos, Antonio Manuel; Domínguez, Mercedes; Domínguez Rodríguez, Lucas José
    In the wake of the COVID-19 pandemic caused by SARS-CoV-2, questions emerged about the potential effects of Bacillus Calmette-Guérin (BCG) vaccine on the immune response to SARS-CoV-2 infection, including the neurodegenerative diseases it may contribute to. To explore this, an experimental study was carried out in BCG-stimulated and non-stimulated k18-hACE2 mice challenged with SARS-CoV-2. Viral loads in tissues determined by RT-qPCR, histopathology in brain and lungs, immunohistochemical study in brain (IHC) as well as mortality rates, clinical signs and plasma inflammatory and coagulation biomarkers were assessed. Our results showed BCG-SARS-CoV-2 challenged mice presented higher viral loads in the brain and an increased frequency of neuroinvasion, with the greatest differences observed between groups at 3–4 days post-infection (dpi). Histopathological examination showed a higher severity of brain lesions in BCG-SARS-CoV-2 challenged mice, mainly consisting of neuroinflammation, increased glial cell population and neuronal degeneration, from 5 dpi onwards. This group also presented higher interstitial pneumonia and vascular thrombosis in lungs (3–4 dpi), BCG-SARS-CoV-2 mice showed higher values for TNF-α and D-dimer values, while iNOS values were higher in SARS-CoV-2 mice at 3–4 dpi. Results presented in this study indicate that BCG stimulation could have intensified the inflammatory and neurodegenerative lesions promoting virus neuroinvasion and dissemination in this experimental model. Although k18-hACE2 mice show higher hACE2 expression and neurodissemination, this study suggests that, although the benefits of BCG on enhancing heterologous protection against pathogens and tumour cells have been broadly demonstrated, potential adverse outcomes due to the non-specific effects of BCG should be considered.
  • Item
    Safety of African Swine Fever Vaccine Candidate Lv17/WB/Rie1 in Wild Boar: Overdose and Repeated Doses
    (2021) Barasona García-Arévalo, José Ángel; Cadenas Fernández, Estefanía; Kosowska, Aleksandra; Barroso Arévalo, Sandra; Rivera Arroyo, Belén; Sánchez, Rocío; Porras, Néstor; Gallardo, Carmina; Sánchez-Vizcaíno Rodríguez, José Manuel
    African swine fever (ASF) is a highly lethal infectious disease that affects domestic pigs and wild boar. Outbreaks of ASF have grown considerably in the last decade causing important economic consequences for the swine industry. Its control is hampered by the lack of an effective treatment or vaccine. In Europe, the wild boar is a key wild reservoir for ASF. The results of the oral vaccination trial of wild boar with Lv17/WB/Rie1 are hope for this problem. However, this vaccine candidate has certain safety concerns, since it is a naturally attenuated vaccine. Therefore, the current study aims to evaluate the safety of this vaccine candidate in terms of overdose (high dose) and repeated doses (revaccination) in wild boar. Low-dose orally vaccinated animals developed only a slight transient fever after vaccination and revaccination. This was also the case for most of the high-dose vaccinated wild boar, except for one of them which succumbed after revaccination. Although this fatality was related to hierarchical fights between animals, we consider that further studies are required for clarification. Considering these new results and the current epidemiological situation of ASF in wild boar, this vaccine prototype is a promising tool for the control of the disease in these wild populations, although further studies are needed.
  • Item
    Detection of Antibodies against Mycobacterium bovis in Oral Fluid from Eurasian Wild Boar
    (Pathogens, 2020) Barasona García-Arévalo, José Ángel; Barroso Arévalo, Sandra; Rivera Arroyo, Belén; Gortázar, Christian; Sánchez-Vizcaíno Rodríguez, José Manuel
    The presence of Mycobacterium bovis and other members of the Mycobacterium tuberculosis complex (MTC) is a main concern in wildlife populations such as the Eurasian wild boar (Sus scrofa). Tests detecting antibodies against the MTC are valuable for tuberculosis (TB) monitoring and control and particularly useful in suids. The development of accurate, efficient, and non-invasive new tools to detect exposure to MTC would be highly beneficial for improving disease surveillance. This study aimed to determine if antibodies against MTC could be detected in oral fluid (OF) samples by a new ELISA test (IgG detection) from naturally TB-infected wild boar. For this, individual, paired serum and OF samples were collected from 148 live wild boar in two TB-status areas from Spain and quantitatively used to validate the new ELISA test. Antibodies against MTC were widely detected in OF samples, for which a significant positive correlation (r = 0.83) was found with the validated serology test. OF ELISA sensitivity and specificity were 67.3% and 100%, respectively. The results of this work suggest that OF samples have the potential to be used for MTC diagnosis as a further step in TB surveillance and control in suid populations. Based on our results, further research is warranted and could be performed using non-invasive new tools directly in field conditions to detect exposure to MTC.
  • Item
    First Detection of SARS-CoV-2 B.1.1.7 Variant of Concern in an Asymptomatic Dog in Spain
    (Viruses, 2021) Barroso Arévalo, Sandra; Sánchez-Vizcaíno Rodríguez, José Manuel; Domínguez Rodríguez, Lucas José; Rivera Arroyo, Belén
    Natural SARS-CoV-2 infection in pets has been widely documented during the last year. Although the majority of reports suggested that dogs’ susceptibility to the infection is low, little is known about viral pathogenicity and transmissibility in the case of variants of concern, such as B.1.1.7 in this species. Here, as part of a large-scale study on SARS-CoV-2 prevalence in pets in Spain, we have detected the B.1.1.7 variant of concern (VOC) in a dog whose owners were infected with SARS-CoV-2. The animal did not present any symptoms, but viral loads were high in the nasal and rectal swabs. In addition, viral isolation was possible from both swabs, demonstrating that the dog was shedding infectious virus. Seroconversion occurred 23 days after the first sampling. This study documents the first detection of B.1.1.7 VOC in a dog in Spain and emphasizes the importance of performing active surveillance and genomic investigation on infected animals.
  • Item
    A subunit vaccine candidate based on the Spike protein of SARS-CoV-2 prevents infectious virus shedding in cats
    (Research in Veterinary Science, 2022) Barroso Arévalo, Sandra; Sánchez Morales, Lidia; Domínguez, Mercedes; Risalde, María A.; García Bocanegra, Ignacio; Sánchez-Vizcaíno Rodríguez, José Manuel; Domínguez Rodríguez, Lucas José; García-Seco Romero, María Teresa
    Of the numerous animal species affected by the SARS-CoV-2 virus, cats are one of the most susceptible, and catto-cat transmission has been described. Although cat-to-human infection has not, as yet, been demonstrated, preventive measures should be taken in order to avoid both viral infection in cats and transmission among them. In this respect, the application of an effective vaccine to at-risk populations would be a useful tool for controlling the disease in this species. Here, we test a new vaccine prototype based on the Spike protein of the virus in order to prevent infection and infectious virus shedding in cats. The vaccine employed in experimentation, and which is easily produced, triggered a strong neutralizing antibody response in vaccinated animals. In contrast to that which occurred with control animals, no infectious virus was detected in the oropharyngeal or rectal swabs of vaccinated cats submitted to a SARS-CoV-2 challenge. These results are of great interest as regards future considerations related to implementing vaccination programs in pets. The value of cats as vaccination trial models is also described herein.
  • Item
    Large-scale study on virological and serological prevalence of SARS-CoV-2 in cats and dogs in Spain
    (Transboundary and Emerging Diseases, 2022) Barroso Arévalo, Sandra; Barneto, Alberto; Ramos, Angel M; Rivera Arroyo, Belén; Sánchez García, Rocío; Sánchez Morales, Lidia; Buendía Andrés, Aranzazu; Ferreras, Elisa; Ortiz Menéndez, Juan Carlos; Moreno, Inmaculada; Serres Dalmau, María Consolacion; Vela, Carmen; Risalde, María A.; Sánchez-Vizcaíno Rodríguez, José Manuel; Domínguez Rodríguez, Lucas José; Pérez Sancho, Marta; Pérez Sancho, Marta
    The disease produced by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is currently one of the primary concerns worldwide. Knowing the zoonotic origin of the disease and that several animal species, including dogs and cats, are susceptible to viral infection, it is critical to assess the relevance of pets in this pandemic. Here, we performed a large-scale study on SARS-CoV-2 serological and viral prevalence in cats and dogs in Spain in order to elucidate their role and susceptibility. Samples from animals in contact with COVID-19 positive people and/or compatible symptoms (n = 492), as well as from random animals (n = 1024), were taken. Despite the large number of animals analyzed, only 12 animals (eight dogs and four cats), which represents 0.79% of the total analyzed animals (n = 1516), were positive for viral SARS-CoV-2 RNA detection by reverse transcription quantitative PCR (RT-qPCR) in which viral isolation was possible in four animals. We detected neutralizing antibodies in 34 animals, four of them were also positive for PCR. This study evidences that pets are susceptible to SARS-CoV-2 infection in natural conditions but at a low level, as evidenced by the low percentage of positive animals detected, being infected humans the main source of infection. However, the inclusion of animals in the surveillance of COVID-19 is still recommended.
  • Item
    A retrospective study of SARS-CoV-2 seroprevalence in dogs and cats in the Community of Madrid, Spain
    (Frontiers in Microbiology, 2023) Sánchez Morales, Lidia; Sánchez-Vizcaíno Rodríguez, José Manuel; Domínguez Rodríguez, Lucas José; Barroso Arévalo, Sandra
    To date, susceptibility to SARS-CoV-2 infection in domestic animals including cats and dogs has been described. However, it is important to carry out passive surveillance of these animals to be aware of any changes in the outcomes of the disease in these species that may occur. In this study, we have performed a retrospective study in which we analyzed sera (n = 1,640) from random animals: dogs (n = 1,381) and cats (n = 259) belonging to both homes (n = 1,533) and animal protection centers (n = 107) in the Community of Madrid, Spain. Neutralizing antibodies were evaluated between November 2021 and May 2022 using a surrogate ELISA kit to determine the seroprevalence. Based on the results obtained, a few animals (both cats and dogs) presented neutralizing antibodies to SARS-CoV-2 (2.3%), all of them from private owners. However, the seroprevalence in cats (4.6%) resulted to be almost twice as much as in dogs (1.9%) which reinforces that cats’ susceptibility to the infection seems higher than in the case of dogs, maybe due to the lower ACE2 expression of the dogs in the respiratory tract. These findings also confirm that the probability of infection is considerably higher in domestic animals in close contact with infected owners, compared to animals living in animal shelters whose contact with humans is markedly lower.
  • Item
    Neuropathological lesions in intravenous BCG-stimulated K18-hACE2 mice challenged with SARS-CoV-2
    (Veterinary Research, 2024) Sánchez Morales, Lidia; Porras González, Néstor; García-Seco Romero, María Teresa; Pérez Sancho, Marta; Cruz López, Fátima; Chinchilla Rodríguez, Blanca; Barroso Arévalo, Sandra; Díaz Frutos, Marta; Buendía Andrés, Aránzazu; Moreno, Inmaculada; Briones Dieste, Víctor; Risalde, María A.; De la Fuente, José; Juste, Ramón; Garrido, Joseba; Balseiro, Ana; Gortázar, Christian; Rodríguez Bertos, Antonio Manuel; Domínguez, Mercedes; Domínguez Rodríguez, Lucas José
    In the wake of the COVID-19 pandemic caused by SARS-CoV-2, questions emerged about the potential effects of Bacillus Calmette-Guérin (BCG) vaccine on the immune response to SARS-CoV-2 infection, including the neurodegenerative diseases it may contribute to. To explore this, an experimental study was carried out in BCG-stimulated and non-stimulated k18-hACE2 mice challenged with SARS-CoV-2. Viral loads in tissues determined by RT-qPCR, histopathology in brain and lungs, immunohistochemical study in brain (IHC) as well as mortality rates, clinical signs and plasma inflammatory and coagulation biomarkers were assessed. Our results showed BCG-SARS-CoV-2 challenged mice presented higher viral loads in the brain and an increased frequency of neuroinvasion, with the greatest differences observed between groups at 3–4 days post-infection (dpi). Histopathological examination showed a higher severity of brain lesions in BCG-SARS-CoV-2 challenged mice, mainly consisting of neuroinflammation, increased glial cell population and neuronal degeneration, from 5 dpi onwards. This group also presented higher interstitial pneumonia and vascular thrombosis in lungs (3–4 dpi), BCG-SARS-CoV-2 mice showed higher values for TNF-α and D-dimer values, while iNOS values were higher in SARS-CoV-2 mice at 3–4 dpi. Results presented in this study indicate that BCG stimulation could have intensified the inflammatory and neurodegenerative lesions promoting virus neuroinvasion and dissemination in this experimental model. Although k18-hACE2 mice show higher hACE2 expression and neurodissemination, this study suggests that, although the benefits of BCG on enhancing heterologous protection against pathogens and tumour cells have been broadly demonstrated, potential adverse outcomes due to the non-specific effects of BCG should be considered.
  • Item
    Low transmission risk of African swine fever virus between wild boar infected by an attenuated isolate and susceptible domestic pigs
    (Frontiers in Veterinary Science, 2023) Kosowska, Aleksandra; Barasona García-Arévalo, José Ángel; Barroso Arévalo, Sandra; Blondeau León, Luisa; Cadenas Fernández, Estefanía; Sánchez-Vizcaíno Rodríguez, José Manuel
    African swine fever (ASF) is a lethal infectious disease that affects domestic and wild pigs. This complex virus has already affected five continents and more than 70 countries and is considered to be the main threat to the global swine industry. The disease can potentially be transmitted directly through contact with infectious animals, or indirectly by means of contaminated feed or environments. Nevertheless, the knowledge regarding the transmission patterns of different ASF virus isolates at the wildlife-livestock interface is still limited. We have, therefore, assessed the potential transmission of an attenuated ASF virus isolate between infectious wild boar and directly exposed domestic pig. We registered 3,369 interspecific interactions between animals, which were brief and mostly initiated by wild boar. The major patterns observed during the study were head-to-head contact owing to sniffing, thus suggesting a high probability of pathogen transmission. However, only one of the five domestic pigs had a short period of viremia and became serologically positive for ASF virus antibodies. It was additionally discovered that the wild boar did not transmit the virulent virus isolate to the domestic pigs, which suggests that the presence of attenuated ASF virus isolates in affected areas may control the spreading of other more virulent isolates. These outcomes may help make decisions related to large-scale targeted management actions against ASF in field conditions.