Person:
Gutiérrez García, Juan Pablo

Loading...
Profile Picture
First Name
Juan Pablo
Last Name
Gutiérrez García
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Producción Animal
Area
Producción Animal
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Ascertaining the genetic background of the Celtic-Iberian pig strain: A signatures of selection approach
    (Journal of Animal Breeding and Genetics, 2023) Arias, Katherine D.; Lee, Hanboreum; Bozzi, Riccardo; Álvarez, Isabel; Gutiérrez García, Juan Pablo; Fernández, Iván; Menéndez, Juan; Beja Pereira, Albano; Goyache Goñi, Félix
    Celtic-Iberian pig breeds were majority in Spain and Portugal until the first half of the 20th century. In the 1990s, they were nearly extinct as a result of the introduction of foreign improved pig breeds. Despite its historical importance, the genetic background of the Celtic-Iberian pig strain is poorly documented. In this study, we have identified genomic regions that might contain signatures of selection peculiar of the Celtic-Iberian genetic lineage. A total of 153 DNA samples of Celtic-Iberian pigs (Spanish Gochu Asturcelta and Portuguese Bísara breeds), Iberian pigs (Spanish Iberian and Portuguese Alentejano breeds), Cinta Senese pig, Korean local pig and Cosmopolitan pig (Hampshire, Landrace and Large White individuals) were analysed. A pairwise-comparison approach was applied: the Gochu Asturcelta and the Bísara samples as test populations and the five other pig populations as reference populations. Three different statistics (XP-EHH, FST and ΔDAF) were computed on each comparison. Strict criteria were used to identify selection sweeps in order to reduce the noise brought on by the Gochu Asturcelta and Bísara breeds' severe population bottlenecks. Within test population, SNPs used to construct potential candidate genomic areas under selection were only considered if they were identified in four of ten two-by-two pairwise comparisons and in at least two of three statistics. Genomic regions under selection constructed within test population were subsequently overlapped to construct candidate regions under selection putatively unique to the Celtic-Iberian pig strain. These genomic regions were finally used for enrichment analyses. A total of 39 candidate regions, mainly located on SSC5 and SSC9 and covering 3130.5 kb, were identified and could be considered representative of the ancient genomic background of the Celtic-Iberian strain. Enrichment analysis allowed to identify a total of seven candidate genes (NOL12, LGALS1, PDXP, SH3BP1, GGA1, WIF1, and LYPD6). Other studies reported that the WIF1 gene is associated with ear size, one of the characteristic traits of the Celtic-Iberian pig strain. The function of the other candidate genes could be related to reproduction, adaptation and immunity traits, indirectly fitting with the rusticity of a non-improved pig strain traditionally exploited under semi-extensive conditions.
  • Item
    Approaching autozygosity in a small pedigree of Gochu Asturcelta pigs
    (Genetics Selection Evolution, 2023) Arias, Katherine D.; Gutiérrez García, Juan Pablo; Fernández, Iván; Álvarez, Isabel; Goyache Goñi, Félix
    Background: In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue. The aim of this research was to study the usefulness of genomic information for the assessment of genetic diversity in the highly endangered Gochu Asturcelta pig breed. Pedigree depth varied from 0 (founders) to 4 equivalent discrete generations (t). Four homozygosity parameters (runs of homozygosity, FROH; heterozygosity-rich regions, FHRR; Li and Horvitz’s, FLH; and Yang and colleague’s FYAN) were computed for each individual, adjusted for the variability in the base population (BP; six individuals) and further jackknifed over autosomes. Individual increases in homozygosity (depending on t) and increases in pairwise homozygosity (i.e., increase in the parents’ mean) were computed for each individual in the pedigree, and effective population size (Ne) was computed for five subpopulations (cohorts). Genealogical parameters (individual inbreeding, individual increase in inbreeding, and Ne) were used for comparisons. Results: The mean F was 0.120 ± 0.074 and the mean BP-adjusted homozygosity ranged from 0.099 ± 0.081 (FLH) to 0.152 ± 0.075 (FYAN). After jackknifing, the mean values were slightly lower. The increase in pairwise homozygosity tended to be twofold higher than the corresponding individual increase in homozygosity values. When compared with genealogical estimates, estimates of Ne obtained using FYAN tended to have low root-mean-squared errors. However, Ne estimates based on increases in pairwise homozygosity using both FROH and FHRR estimates of genomic inbreeding had lower root-mean-squared errors. Conclusions: Parameters characterizing homozygosity may not accurately depict losses of variability in small populations in which breeding policy prohibits matings between close relatives. After BP adjustment, the performance of FROH and FHRR was highly consistent. Assuming that an increase in homozygosity depends only on pedigree depth can lead to underestimating it in populations with shallow pedigrees. An increase in pairwise homozygosity computed from either FROH or FHRR is a promising approach for characterizing autozygosity.
  • Item
    Population dynamics of potentially harmful haplotypes: a pedigree analysis
    (BMC Genomics, 2024) Arias, Katherine D.; Fernández, Iván; Gutiérrez García, Juan Pablo; Álvarez, Isabel; Goyache Goñi, Félix
    Background: The identification of low-frequency haplotypes, never observed in homozygous state in a population, is considered informative on the presence of potentially harmful alleles (candidate alleles), putatively involved in inbreeding depression. Although identification of candidate alleles is challenging, studies analyzing the dynamics of potentially harmful alleles are lacking. A pedigree of the highly endangered Gochu Asturcelta pig breed, including 471 individuals belonging to 51 different families with at least 5 offspring each, was genotyped using the Axiom PigHDv1 Array (658,692 SNPs). Analyses were carried out on four different cohorts defined according to pedigree depth and at the whole population (WP) level. Results: The 4,470 Linkage Blocks (LB) identified in the Base Population (10 individuals), gathered a total of 16,981 alleles in the WP. Up to 5,466 (32%) haplotypes were statistically considered candidate alleles, 3,995 of them (73%) having one copy only. The number of alleles and candidate alleles varied across cohorts according to sample size. Up to 4,610 of the alleles identified in the WP (27% of the total) were present in one cohort only. Parentage analysis identified a total of 67,742 parent-offspring incompatibilities. The number of mismatches varied according to family size. Parent-offspring inconsistencies were identified in 98.2% of the candidate alleles and 100% of the LB in which they were located. Segregation analyses informed that most potential candidate alleles appeared de novo in the pedigree. Only 17 candidate alleles were identified in the boar, sow, and paternal and maternal grandparents and were considered segregants. Conclusions: Our results suggest that neither mutation nor recombination are the major forces causing the apparition of candidate alleles. Their occurrence is more likely caused by Allele-Drop-In events due to SNP calling errors. New alleles appear when wrongly called SNPs are used to construct haplotypes. The presence of candidate alleles in either parents or grandparents of the carrier individuals does not ensure that they are true alleles. Minimum Allele Frequency thresholds may remove informative alleles. Only fully segregant candidate alleles should be considered potentially harmful alleles. A set of 16 candidate genes, potentially involved in inbreeding depression, is described.
  • Item
    Copy Number Variation Regions Differing in Segregation Patterns Span Different Sets of Genes
    (Animals, 2023) Arias, Katherine D.; Gutiérrez García, Juan Pablo; Fernández, Iván; Álvarez, Isabel; Goyache, Félix
    Copy number variations regions (CNVRs) can be classified either as segregating, when found in both parents, and offspring, or non-segregating. A total of 65 segregating and 31 non-segregating CNVRs identified in at least 10 individuals within a dense pedigree of the Gochu Asturcelta pig breed was subjected to enrichment and functional annotation analyses to ascertain their functional independence and importance. Enrichment analyses allowed us to annotate 1018 and 351 candidate genes within the bounds of the segregating and non-segregating CNVRs, respectively. The information retrieved suggested that the candidate genes spanned by segregating and non-segregating CNVRs were functionally independent. Functional annotation analyses allowed us to identify nine different significantly enriched functional annotation clusters (ACs) in segregating CNVR candidate genes mainly involved in immunity and regulation of the cell cycle. Up to five significantly enriched ACs, mainly involved in reproduction and meat quality, were identified in non-segregating CNVRs. The current analysis fits with previous reports suggesting that segregating CNVRs would explain performance at the population level, whereas non-segregating CNVRs could explain between-individuals differences in performance.