Person:
Gutiérrez García, Juan Pablo

Loading...
Profile Picture
First Name
Juan Pablo
Last Name
Gutiérrez García
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Producción Animal
Area
Producción Animal
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 11
  • Item
    Combining Threshold, Thurstonian and Classical Linear Models in Horse Genetic Evaluations for Endurance Competitions
    (Animals, 2020) Cervantes Navarro, Isabel; Gutiérrez García, Juan Pablo; García-Ballesteros, Silvia; Varona, Luis
    The racing time and rank at finish traits are commonly used for endurance horse breeding programs as a measure of their performance. Even so, given the nature of endurance competitions, many horses do not finish the race. However, the exclusion of non placed horses from the dataset could have an influence on the prediction of individual breeding values. The objective of the present paper was to develop a multitrait model including race time (T), rank (R) and placing (P), with different methodologies, to improve the genetic evaluation in endurance competitions in Spain. The database contained 6135 records from 1419 horses, with 35% of the records not placed. Horse pedigree included 10868 animals, with 52% Arab Horses. All models included gender, age and race effect as systematic effects and combined different random effects beside the animal and residual effects: rider, permanent environmental effect, and interaction horse-rider. The kilometers per race was included as a covariate for T. Heritabilities were estimated as moderately low, ranging from 0.06 to 0.14 for T, 0.09 to 0.15 for P, and 0.07 to 0.17 for R, depending on the model. T and R appeared mostly as inverse measures of the same trait due to their high genetic correlation, suggesting that T can be ignored in future genetic evaluations. P was the most independent trait from the genetic correlations. The possibility of simultaneously processing the threshold, Thurstonian and continuous traits has opened new opportunities for genetic evaluation in horse populations, and much more practical genetic evaluations can be done to help a proper genetic selection.
  • Item
    Modulating birth weight heritability in mice
    (Journal of Animal Science, 2017) Ibáñez-Escriche, Noelia; Gutiérrez García, Juan Pablo; Cervantes Navarro, Isabel; Formoso-Rafferty Castilla, Nora
    Expected genetic response is proportional to the heritability of the trait, and this parameter is considered inherent of a specific trait in a particular population. However, models assuming heterogeneity in residual variance lead to different estimates of heritability across combinations of systematic (environmental) effects. Modifying the residual variance of the birth weight by artificial selection was shown to be feasible in a divergent selection experiment in mice. The objectives of this work were to 1) estimate the evolution of the heritability of birth weight in mice in the mentioned experiment, and 2) estimate different heritability regarding systematic effects. Data came from eleven generations of a divergent selection experiment to modify the residual variability of birth weight in mice. A total of 15,431 birth weight records from 959 females and 1,641 litters in combination with 14,786 pedigree records were used. The model used for analysis included generation, litter size, sex, and parity number as systematic effects. Each record of birth weight was assigned to the mother of the pup in the model which assumes that the residual variance is heterogeneous and partially under genetic control. Differences in heritability between lines reached values of 0.06 in the last generations. Choosing the most extreme values of systematic effects, the birth weight heritability ranged from 0.04 to 0.22. From these results, the possibility of modulating the heritability for this trait could be explored in 1 of 2 ways: selecting to decrease the residual variability, or choosing the specific levels of the systematic effects.
  • Item
    Genomic inbreeding measures applied to a population of mice divergently selected for birth weight environmental variance
    (Frontiers in Genetics, 2023) Ojeda Marín, Candela; Cervantes Navarro, Isabel; Formoso-Rafferty Castilla, Nora; Gutiérrez García, Juan Pablo
    This study aimed to compare different inbreeding measures estimated from pedigree and molecular data from two divergent mouse lines selected for environmental birth weight during 26 generations. Furthermore, the performance of different approaches and both molecular and pedigree data sources for estimating Ne were tested in this population. A total of 1,699 individuals were genotyped using a high-density genotyping array. Genomic relationship matrices were used to calculate molecular inbreeding: Nejati-Javaremi (FNEJ), Li and Horvitz (FL&H), Van Raden method 1 (FVR1) and method 2 (FVR2), and Yang (FYAN). Inbreeding based on runs of homozygosity (FROH) and pedigree inbreeding (FPED) were also computed. FROH, FNEJ, and FL&H were also adjusted for their average values in the first generation of selection and named FROH0, FNEJ0, and FL&H0. ∆F was calculated from pedigrees as the individual inbreeding rate between the individual and his parents (∆FPEDt) and individual increases in inbreeding (∆FPEDi). Moreover, individual ∆F was calculated from the different molecular inbreeding coefficients (∆FNEJ0, ∆FL&H, ∆FL&H0, ∆FVR1, ∆FVR2, ∆FYAN, and ∆FROH0). The Ne was obtained from different ∆F, such as NePEDt, NePEDi, NeNEJ0, NeL&H, NeL&H0, NeVR1, NeVR2, NeYAN, and NeROH0. Comparing with FPED, FROH, FNEJ and FVR2 overestimated inbreeding while FNEJ0, FL&H, FL&H0, FVR1 and FYAN underestimated inbreeding. Correlations between inbreeding coefficients and ∆F were calculated. FROH had the highest correlation with FPED (0.89); FYAN had correlations >0.95 with all the other molecular inbreeding coefficients. NePEDi was more reliable than NePEDt and presented similar behaviour to NeL&H0 and NeNEJ0. Stable trends in Ne were not observed until the 10th generation. In the 10th generation NePEDi was 42.20, NeL&H0 was 45.04 and NeNEJ0 was 45.05 and in the last generation these Ne were 35.65, 35.94 and 35.93, respectively FROH presented the highest correlation with FPED, which addresses the identity by descent probability (IBD). The evolution of NeL&H0 and NeNEJ0 was the most similar to that of NePEDi. Data from several generations was necessary to reach a stable trend for Ne, both with pedigree and molecular data. This population was useful to test different approaches to computing inbreeding coefficients and Ne using molecular and pedigree data.
  • Item
    Feed and reproductive efficiency differences between divergently selected lines for birthweight environmental variability in mice
    (Journal Animal Breeding and Genetics, 2018) Flor, Miguel de la; Formoso-Rafferty Castilla, Nora; Gutiérrez García, Juan Pablo; Cervantes Navarro, Isabel
    Sustainability has come to play an important role in agricultural production. A way to combine efficiency with sustainability might be by searching for robust animals that can be selected for the homogeneity of certain traits. Furthermore, the optimization of feed efficiency is one of the challenges to improve livestock genetics programmes, but this might compromise reproductive efficiency. Animals from two divergent mouse lines, regarding variability of birthweight, were used to check whether homogeneity was also related to both feed and reproductive efficiency. The objective of this study was to use these divergent lines of mice to compare them with their feed efficiency and the reproductive capacity. Animal weight, weight gain, feed intake, relative intake and cumulated transformation index were considered as feed efficiency traits. Animals from the low line had both lower weight and feed intake from 21 to 56 days. They had a worse transforming index in the three last weeks when litter size was fitted as an effect of the model, but the lines become similar if the higher litter size of the low line was not included. Reproductively, the low line performed better considering the number of females having parturitions, the number of parturitions, and with higher litter size and survival in both parturitions. Hence, the low variability line was preferred because of reproductive efficiency without seriously affecting its feed efficiency. Homogeneity seemed to be related to robustness with similar feed efficiency but higher reproductive efficiency.
  • Item
    Embryo survival and fertility differ in lines divergently selected for birth weight homogeneity in mice
    (Journal of Animal Breeding and Genetics, 2023) Formoso-Rafferty Castilla, Nora; El‐Ouazizi El‐Kahia, Laila; Arias Álvarez, María; Gutiérrez García, Juan Pablo; Cervantes Navarro, Isabel
    The selection of animals for lower environment sensitivity around the optimum trait value can also provide benefits in productivity and welfare. A divergent selection experiment for birth weight environmental variability in mice was successfully conducted over 17 generations. Animals from low variability selected line (L-line) were more robust by having a higher litter size and survival at weaning in a common breeding environment, than those from high variability line (H-line). The objective of this study was to analyze the differences between those divergently selected lines for embryo and fetal survival and for fertility and prolificacy rate. To study embryo survival and ovulation rate, a total of 98 females (34 H-line and 50 L-line) were studied in four generations of the divergent experiment. To analyze fetal survival and fertility rate, 378 female mice (138 H-line and 240 L-line) in 10 generations or the divergent experiment were studied. Ultrasound scans were performed at day 14 of gestation to establish the number of total fetal and the embryo absorptions. Mortality was addressed as the difference between litter size at birth and the number of fetuses at 14 days of gestation. The number of pregnant females in the first 3 days after mating was used to measure fertility. A linear model was also fitted to analyze embryo mortality, litter size, and the number of embryos at 14 days of gestation. A categorical model was then used to study fertility, including line, generation, and its interaction as effects. Despite the fact that there were no significant differences in the ovulation rate, litter size at birth was significantly higher in the L-line than in the H-line (9.82 vs. 8.36 pups, p < 0.001). Moreover, embryo mortality was significantly lower in the L-line than in the H-line (1.39 vs. 2.87 fetuses, p < 0.001). L-line females were more fertile (53.49% vs. 23.26% for the H-line). According to these results, the line selected for low environmental variance would be preferable for robustness and animal welfare.
  • Item
    Differential patterns in runs of homozygosity in two mice lines under divergent selection for environmental variability for birth weight
    (Journal of Animal Breeding and Genetics, 2023) Ojeda Marín, Candela; Gutiérrez García, Juan Pablo; Formoso-Rafferty Castilla, Nora; Goyache Goñi, Félix; Cervantes Navarro, Isabel
    Runs of homozygosity (ROH) are defined as long continuous homozygous stretches in the genome which are assumed to originate from a common ancestor. It has been demonstrated that divergent selection for variability in mice is possible and that low variability in birth weight is associated with robustness. To analyse ROH patterns and ROH-based genomic inbreeding, two mouse lines that were divergently selected for birth weight variability for 26 generations were used, with: 752 individuals for the high variability line (H-Line), 766 individuals for the low variability line (L-Line) and 74 individuals as a reference population. Individuals were genotyped using the high density Affymetrix Mouse Diversity Genotyping Array. ROH were identified using both the sliding windows (SW) and the consecutive runs (CR) methods. Inbreeding coefficients were calculated based on pedigree (FPED) information, on ROH identified using the SW method (FROHSW) and on ROH identified using the CR method (FROHCR). Differences in genomic inbreeding were not consistent across generations and these parameters did not show clear differences between lines. Correlations between FPED and FROH were high, particularly for FROHSW. Moreover, correlations between FROHSW and FPED were even higher when ROH were identified with no restrictions in the number of heterozygotes per ROH. The comparison of FROH estimates between either of the selected lines were based on significant differences at the chromosome level, mainly in chromosomes 3, 4, 6, 8, 11, 15 and 19. ROH-based inbreeding estimates that were computed using longer homozygous segments had a higher relationship with FPED. Differences in robustness between lines were not attributable to a higher homozygosis in the L-Line, but maybe to the different distribution of ROH at the chromosome level between lines. The analysis identified a set of genomic regions for future research to establish the genomic basis of robustness.
  • Item
    Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line
    (Animals, 2020) Formoso-Rafferty, Nora; Chavez, Katherine Natalia; Ojeda Marín, Candela; Cervantes Navarro, Isabel; Gutiérrez García, Juan Pablo
    Birth weight (BW) in animal production is an economically important trait in prolific species. The laboratory mouse (Mus musculus) is used as an experimental animal because it is considered a suitable model for prolific species such as rabbits and pigs. Two mouse lines were divergently selected for birth weight variability with a third line of non-selected control population of the same origin as the animals starting the experiment. The objective of this study was, therefore, to compare and evaluate the differential response of each line. The animals were from the 17th generation of both low and high BW variability lines of the divergent selection experiment, including in addition animals from the control line. The dataset contained 389 records from 48 litters of the high line, 734 records from 73 litters of the low line, and 574 records from 71 litters of the control line. The studied traits were as follows: the BW, the BW variance, the BW standard deviation, the BW coefficient of variation within-litter, the weaning weight (WW), the litter size at birth and at weaning, the weight gain, and the preweaning survival. The model included the line effect jointly with the parturition number and its interaction, the linear and quadratic LS as covariates except for the LS trait itself when analyzing litter traits, as well as the pup sex when analyzing individual traits. The low line had a lower BW and WW, but a higher litter size, and greater robustness owing to a higher survival at weaning. As a model of livestock animals, the findings from this experiment led to a proposal of selection for pig production that would combine an increase in litter size with higher survival and welfare. Compared with the control line, a much higher response was observed in the low variability line than in the high line, making it extremely satisfactory given that homogeneity provides advantages in terms of animal welfare and robustness.
  • Item
    Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice
    (Journal of Animal Breeding and Genetics, 2016) Formoso-Rafferty Castilla, Nora; Cervantes Navarro, Isabel; Ibáñez-Escriche, Noelia; Gutiérrez García, Juan Pablo
    Data from seven generations of a divergent selection experiment designed for environmental variability of birth weight were analysed to estimate genetic parameters and to explore signs of selection response. A total of 10 783 birth weight records from 638 females and 1127 litters in combination with 10 007 pedigree records were used. Each record of birth weight was assigned to the mother of the pup in a heteroscedastic model, and after seven generations of selection, evidence of success in the selection process was shown. A Bayesian analysis showed that success of the selection process started from the first generation for birth weight and from the second generation for its environmental variability. Genetic parameters were estimated across generations. However, only from the third generation onwards were the records useful to consider the results to be reliable. The results showed a consistent positive and low genetic correlation between the birth weight trait and its environmental variability, which could allow an independent selection process. This study has demonstrated that the genetic control of the birth weight environmental variability is possible in mice. Nevertheless, before the results are applied directly in farm animals, it would be worth confirming any other implications on other important traits, such as robustness, longevity and welfare.
  • Item
    Impact of selection for birth weight variability on reproductive longevity: A mice model
    (Journal of Animal Breeding and Genetics, 2022) Formoso Rafferty, Nora; Gutiérrez García, Juan Pablo; García Álvarez, Andrés; Pérez Pérez, Teresa; Cervantes Navarro, Isabel
    Uniformity, understood as a similar performance in relevant livestock traits, such as birth weight within the litter, is being included as one of the selection objectives in breeding programmes, especially for polytocous livestock species. A divergent selection experiment for birth weight within-litter variability in mice during 23 generations showed that homogeneous animals were better for litter size, survival and feed efficiency but less heavy than heterogeneous animals. The aim of this study was to compare the reproductive longevity in both divergent lines as time to the end of the reproductive period. Two generations from both lines with an initial number of 43 females and 43 males were mated one to one and stayed together to have consecutive parturitions until the end of the reproductive life. Females were discarded when the time elapsed from the last parturition was longer than 63 days. The time to the end of the reproductive period between both lines was compared by fitting a Cox proportional hazard regression model adjusting for line, generation and its interaction. The rate of parturitions in both lines was also compared using a Prentice–Williams–Peterson model adjusted for the same effects. The low variability line was associated with a higher parturition rate, e.g., adjusted hazard ratio was 2.93 (95% CI 2.17–3.94). The Cox model showed that the low variability females also presented benefits of time to the end of the reproductive period, with an adjusted hazard ratio of 0.26 (95% CI 0.16–0.41). The median of reproductive days was 55.50 in the high variability line whilst the median was 252.50 daysforthe low variability females. The homogeneous line presented important reproductive advantages suggesting higher robustness and animal welfare. Further research should confirm whether the findings presented here of a better performance in the low variability line could be properly applied to some livestock species.
  • Item
    Breeding Strategies to Optimize Effective Population Size in Low Census Captive Populations: The Case of Gazella cuvieri
    (Animals, 2021) Ojeda Marín, Candela; Cervantes Navarro, Isabel; Moreno, Eulalia; Goyache Goñi, Félix; Gutiérrez García, Juan Pablo
    Small-sized populations frequently undergo a significant loss of genetic variability that can lead to their extinction. Therefore, research on animal breeding has focused on mating systems for minimizing the disappearance of genetic variability. Minimizing the average coancestry of offspring has been described as the best strategy for this purpose. Traditionally, the preservation of genetic variability has been approached via breeding strategies for increasing the effective population size (Ne). The main objective of this study was to compare, via computer simulations, the performance of different breeding schemes to limit the losses of genetic diversity in small populations. This objective was achieved by monitoring the evolution of the effective size obtained by different strategies across 20 generations with a starting point of two pedigree real populations of Gazella cuvieri. The results showed that minimizing average coancestry in a cohort did not maximize the effective size as compared with new strategies that were designed for this study. Furthermore, the best strategy may vary for each population and should be studied individually.