Person:
Vallet Regí, María Dulce Nombre

Loading...
Profile Picture
First Name
María Dulce Nombre
Last Name
Vallet Regí
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Química en Ciencias Farmacéuticas
Area
Química Inorgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Effects of mesoporous SiO2-CaO nanospheres on the murine peritoneal macrophages/Candida albicans interface
    (International Immunopharmacology, 2021) Díez Orejas, Rosalia; Casarrubios Molina, Laura; Feito Castellano, María José; Rojo, J.M.; Vallet Regí, María Dulce Nombre; Arcos Navarrete, Daniel; Portolés Pérez, María Teresa
    The use of nanoparticles for intracellular drug delivery could reduce the toxicity and side effects of the drug but, the uptake of these nanocarriers could induce adverse effects on cells and tissues after their incorporation. Macrophages play a central role in host defense and are responsible for in vivo nanoparticle trafficking. Assessment of their defense capacity against pathogenic micro-organisms after nanoparticle uptake, is necessary to prevent infections associated with nanoparticle therapies. In this study, the effects of hollow mesoporous SiO2-CaO nanospheres labeled with fluorescein isothiocyanate (FITC-NanoMBGs) on the function of peritoneal macrophages was assessed by measuring their ability to phagocytize Candida albicans expressing a red fluorescent protein. Two macrophage/fungus ratios (MOI 1 and MOI 5) were used and two experimental strategies were carried out: a) pretreatment of macrophages with FITC-NanoMBGs and subsequent fungal infection; b) competition assays after simultaneous addition of fungus and nanospheres. Macrophage pro-inflammatory phenotype markers(CD80 expression and interleukin 6 secretion) were also evaluated. Significant decreases of CD80+ macrophage percentage and interleukin 6 secretion were observed after 30 min, indicating that the simultaneous incorporation of NanoMBG and fungus favors the macrophage non-inflammatory phenotype. The present study evidences that the uptake of these nanospheres in all the studied conditions does not alter the macrophage function. Moreover, intracellular FITC-NanoMBGs induce a transitory increase of the fungal phagocytosis by macrophages at MOI 1 and after a short time of interaction. In the competition assays, as the intracellular fungus quantity increased, the intracellular FITC-NanoMBG content decreased in a MOI- and time-dependent manner. These results have confirmed that macrophages clearly distinguish between inert material and the live yeast in a dynamic intracellular incorporation. Furthermore, macrophage phagocytosis is a critical determinant to know their functional state and a valuable parameter to study the nanomaterial / macrophages / Candida albicans interface.
  • Item
    High glucose alters the secretome of mechanically stimulated osteocyte-like cells affecting osteoclast precursor recruitment and differentiation
    (Journal of Cellular Physiology, 2017) Maycas, Marta; Portolés Pérez, María Teresa; Matesanz Sancho, María Concepción; Buendía, Irene; Linares, Javier; Feito Castellano, María José; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre; Plotkin, Lilian I.; Esbrit, Pedro; Gortázar, Arancha R.
    Diabetes mellitus (DM) induces bone deterioration, while mechanical stimulation promotes osteocyte-driven bone formation. We aimed to evaluate the interaction of acute exposure (24 h) to high glucose (HG) with both the pro-survival effect conferred to osteocytic MLO-Y4 cells and osteoblastic MC3T3-E1 cells by mechanical stimulation and the interaction of these cells with osteoclast precursor RAW264.7 cells. We found that 24 h of HG (25 mM) preexposure prevented both cell survival and ERK and β-catenin nuclear translocation upon mechanical stimulation by fluid flow (FF) (10 min) in both MLO-Y4 and MC3T3-E1 cells. However, migration of RAW 264.7 cells was inhibited by MLO-Y4 cell-conditioned medium (CM), but not by MC3T3-E1 cell-CM, with HG or FF. This inhibitory effect was associated with consistent changes in VEGF, RANTES, MIP-1α, MIP-1β MCP-1, and GM-CSF in MLO-Y4 cellCM. RAW264.7 proliferation was inhibited by MLO-Y4 CM under static or HG conditions, but it increased by FF-CM with or without HG. In addition, both FF and HG abrogated the capacity of RAW 264.7 cells to differentiate into osteoclasts, but in a different manner. Thus, HG-CM in static condition allowed formation of osteoclast-like cells, which were unable to resorb hydroxyapatite. In contrast, FF-CM prevented osteoclastogenesis even in HG condition. Moreover, HG did not affect basal RANKL or IL-6 secretion or their inhibition induced by FF in MLO-Y4 cells. In conclusion, this in vitro study demonstrates that HG exerts disparate effects on osteocyte mechanotransduction, and provides a novel mechanism by which DM disturbs skeletal metabolism through altered osteocyte-osteoclast communication.
  • Item
    Mesoporous bioactive glass/epsilon-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep
    (Acta Biomaterialia, 2019) Gómez Cerezo, María Natividad; Casarrubios Molina, Laura; Saiz-Pardo Sanz, Melchor; Ortega, Luis; de Pablo, David; Díaz-Güemes, Idoia; Fernández-Tomé, Blanca; Enciso, Sivlia; Sánchez-Margallo, Francisco Miguel; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre
    Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and epolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2) and osteoclasts derived from RAW 264.7 macrophages. In vivo studies were carried out by implantation into cavitary defects drilled in osteoporotic sheep. The scaffolds evidenced excellent bone regeneration properties, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, thick trabeculae, high vascularization and high presence of osteoblasts and osteoclasts. In order to evaluate the effects of the local release of an antiosteoporotic drug, 1% (%wt) of zoledronic acid was incorporated to the scaffolds. The scaffolds loaded with zoledronic acid induced apoptosis in Saos 2 cells, impeded osteoclast differentiation in a time dependent manner and inhibited bone healing, promoting an intense inflammatory response in osteoporotic sheep.