Person:
Pingarrón Carrazón, José Manuel

Loading...
Profile Picture
First Name
José Manuel
Last Name
Pingarrón Carrazón
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 21
  • Item
    Amperometric Immunosensing Scaffolds for Rapid, Simple, Non-Invasive and Accurate Determination of Protein Biomarkers of Well-Accepted and Emerging Clinical Importance
    (Proceedings, 2017) Pedrero Muñoz, María; Muñoz San Martín, Cristina; Torrente Rodríguez, Rebeca Magnolia; Ruiz Valdepeñas Montiel, Víctor; Vargas Orgaz, Eva; Manuel de Villena Rueda, Francisco Javier; Barderas Manchado, Rodrigo; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
  • Item
    Toward Liquid Biopsy: Determination of the Humoral Immune Response in Cancer Patients Using HaloTag Fusion Protein-Modified Electrochemical Bioplatforms
    (Analytical Chemistry, 2016) Garranzo Asensio, María; Guzmán Aránguez, Ana Isabel; Povés Francés, Carmen; Fernández Aceñero, Mª Jesús; Torrente Rodríguez, Rebeca Magnolia; Ruiz Valdepeñas Montiel, Víctor; Domínguez Muñóz, Gemma; San Frutos Llorente, Luis; Rodríguez Salas, Nuria; Villalba Díaz, Mayte; Pingarrón Carrazón, José Manuel; Campuzano Ruiz, Susana; Barderas Manchado, Rodrigo
    Autoantibodies raised against tumor-associated antigens have shown high promise as clinical biomarkers for reliable diagnosis, prognosis, and therapy monitoring of cancer. An electrochemical disposable biosensor for the specific and sensitive determination of p53-specific autoantibodies has been developed for the first time in this work. This biosensor involves the use of magnetic microcarriers (MBs) modified with covalently immobilized HaloTag fusion p53 protein as solid supports for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric signal using the system hydroquinone/H2O2 was related to the levels of p53-autoantibodies in the sample. The biosensor was applied for the analysis of sera from 24 patients with high-risk of developing colorectal cancer and 6 from patients already diagnosed with colorectal (4) and ovarian (2) cancer. The developed biosensor was able to determine p53 autoantibodies with a sensitivity higher than that of a commercial standard ELISA using a just-in-time produced protein in a simpler protocol with less sample volume and easily miniaturized and cost-effective instrumentation.
  • Item
    Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms
    (Chemosensors, 2016) Ruiz Valdepeñas Montiel, Víctor; Torrente Rodríguez, Rebeca Magnolia; Campuzano Ruiz, Susana; Pellicanò, Alessandro; Reviejo García, Ángel Julio; Cosio, Maria; Pingarrón Carrazón, José Manuel
    In this work, a novel magnetic beads (MBs)-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2) is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs). Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs) and the H2O2/hydroquinone (HQ) system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg) in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs) in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens.
  • Item
    11PS04 is a new chemical entity identified by microRNA-based biosensing with promising therapeutic potential against cancer stem cells
    (Scientific Reports, 2019) Aguado Sánchez, Tania; Romero-Revilla, José A.; Granados, Rosario; Campuzano Ruiz, Susana; Torrente Rodríguez, Rebeca Magnolia; Cuesta Martínez, Ángel; Albiñana, Virginia; Botella, Luisa María; Santamaría, Silvia; Garcia-Sanz, Jose A.; Pingarrón Carrazón, José Manuel; Sánchez-Sancho, Francisco; Sánchez-Puelles, José-María
    Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.
  • Item
    Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs
    (International Journal of Molecular Sciences, 2017) Vargas Orgaz, Eva; Torrente Rodríguez, Rebeca Magnolia; Ruiz Valdepeñas Montiel, Víctor; Povedano Muñumel, Eloy; Pedrero Muñoz, María; Montoya, Juan; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA–RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at −0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 μL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA–RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.
  • Item
    Improving Cancer Outcomes through Electrochemical Biosensing of Early Diagnosis/Prognosis Biomarkers in Human Biopsies
    (Proceedings, 2017) Pingarrón Carrazón, José Manuel; Campuzano Ruiz, Susana; Torrente Rodríguez, Rebeca Magnolia; Ruiz Valdepeñas Montiel, Víctor; Vargas Orgaz, Eva; Barderas Manchado, Rodrigo
  • Item
    Single-Step Incubation Determination of miRNAs in Cancer Cells Using an Amperometric Biosensor Based on Competitive Hybridization onto Magnetic Beads
    (Sensors, 2018) Vargas Orgaz, Eva; Povedano Muñumel, Eloy; Ruiz Valdepeñas Montiel, Víctor; Torrente Rodríguez, Rebeca Magnolia; Zouari, Mohamed; Montoya Miñano, Juan José; Raouafi, Noureddine; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs) and amperometric transduction at screen-printed carbon electrodes (SPCEs). The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC)-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp) immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs). Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP)-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at −0.20 V (versus the Ag pseudo-reference electrode) was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD) of 0.2 nM (5 fmol in 25 μL of sample) for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNAt) extracted from breast cancer cells (MCF-7) were demonstrated.
  • Item
    Amperometric magnetoimmunoassay for the determination of lipoprotein(a)
    (Microchimica Acta, 2015) Kaçar, Ceren; Torrente Rodríguez, Rebeca Magnolia; Pedrero Muñoz, María; Campuzano Ruiz, Susana; Kilic, Esma; Pingarrón Carrazón, José Manuel
    A highly sensitive amperometric magnetoimmunoassay for rapid determination of lipoprotein(a) (Lp(a)), an important predictor of cardiovascular disease risk, in human serum, is described. It uses a sandwich configuration involving selective capture antibody [antiLp(a)] and biotinylated detector antibody [biotinantiLp(a)], and a streptavidin-HRP conjugate on carboxymodified magnetic beads (HOOC-MBs). The resulting MBs bearing the sandwiched immunoconjugates were captured by a magnet placed under the working electrode surface of a disposable screen-printed carbon electrode and the extent of the affinity reaction was monitored amperometrically at −0.20 V (vs a silver pseudo-reference electrode) in the presence of hydroquinone as an electron transfer mediator and upon addition of H2O2 as the enzyme substrate. The method exhibited a wide linear response range (from 0.01 to 0.5 μgmL−1), a detection limit of 4 ng mL−1, and an excellent selectivity over other serum components. The utility of the immunoassay was demonstrated by analyzing a reference serum containing a certified quantity of Lp(a). The performance of this magnetoimmunoassay compares favorably to that of an integrated amperometric immunoassay described earlier.
  • Item
    Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification
    (ACS Sensors, 2017) Ruiz Valdepeñas Montiel, Víctor; Povedano Muñumel, Eloy; Vargas, Eva; Torrente Rodríguez, Rebeca Magnolia; Pedrero Muñoz, María; Reviejo García, Ángel Julio; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    Currently, electrochemical nucleic acid-based biosensing methodologies involving hybridization assays, specific recognition of RNA/DNA and RNA/RNAduplexes, and amplification systems provide an attractive alternative to conventional quantification strategies for the routine determination of relevant nucleic acids at different settings. A particularly relevant objective in the development of such nucleic acid biosensors is the design of as many as possible affordable, quick, and simple methods while keeping the required sensitivity. With this aim in mind, this work reports, for the first time, a thorough comparison between 11 methodologies that involve different assay formats and labeling strategies for targeting the same DNA. The assayed approaches use conventional sandwich and competitive hybridization assays, direct hybridization coupled to bioreceptors with affinity for RNA/DNA duplexes, multienzyme labeling bioreagents, and DNA concatamers. All of them have been implemented on the surface of magnetic beads (MBs) and involve amperometrictransduction at screen-printed carbon electrodes (SPCEs). The influence of the formed duplex length and of the labeling strategy have also been evaluated. Results demonstrate that these strategies can provide very sensitive methods without the need for using nanomaterials or polymerase chain reaction (PCR). In addition, the sensitivity can be tailored within several orders of magnitude simply by varying the bioassay format, hybrid length or labeling strategy. This comparative study allowed us to conclude that the use of strategies involving longer hybrids, the use of antibodies with specificity for RNA/DNA heteroduplexes and labeling with bacterial antibody binding proteins conjugated with multiple enzyme molecules, provides the best sensitivity.
  • Item
    Electrochemical detection of peanuts at trace levels in foods using a magnetoimmunosensor for the allergenic protein Ara h 2
    (Sensors and Actuators B: Chemical, 2016) Ruiz Valdepeñas Montiel, Víctor; Pellicanò, Alessandro; Campuzano Ruiz, Susana; Torrente Rodríguez, Rebeca Magnolia; Reviejo García, Ángel Julio; Cosio, Maria Stella; Pingarrón Carrazón, José Manuel
    A highly sensitive disposable amperometric magnetoimmunosensor for the rapid determination of Ara h 2 protein, one of the major peanut allergens, is reported. The approach uses a sandwich configuration involving selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs). Detector antibodies are labeled with HRP-conjugated secondary antibodies and the MBs bearing the immunoconjugates are magnetically captured on surface of a disposable screen-printed carbon electrode (SPCE). The affinity reactions are monitored amperometrically at −0.20 V (vs a Ag pseudo-reference electrode) in the presence of hydroquinone (HQ) as electron transfer mediator and upon addition of hydrogen peroxide as the enzyme substrate. The developed magnetoimmunosensor exhibits a wide range of linearity between 87 and 10,000 pg/mL Ara h 2 with a detection limit of 26 pg/mL as well as a great selectivity against other non-target proteins. The magnetoimmunosensing platform was successfully applied for the detection of Ara h 2 in different food extracts. After an appropriate sample dilution no matrix effects were observable. The developed methodology was able to detect trace amounts of the peanut allergen (0.0005% or 5.0 mg/kg) in wheat flour spiked samples. The results correlated properly with those provided by a commercial ELISA kit.