Person:
Triviño Casado, Alberto

Loading...
Profile Picture
First Name
Alberto
Last Name
Triviño Casado
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Inmunología, Oftalmología y ORL
Area
Oftalmología
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma
    (Frontiers in Aging Neuroscience, 2017) Daniel Ajoy; Ramírez Sebastián, José Manuel; Hoz Montañana, María Rosa De; García Martín, Elena Salobrar; Salazar Corral, Juan José; Rojas López, María Blanca; López Cuenca, Inés; Rojas Lozano, María Del Pilar; Triviño Casado, Alberto; Ramírez Sebastián, Ana Isabel
    Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
  • Item
    Microglial changes in the early aging stage in a healthy retina and an experimental glaucoma model
    (Glaucoma: A Neurodegenerative Disease of the Retina and Beyond - Part A, 2020) Ramírez Sebastián, Ana Isabel; Fernández Albarral, José Antonio; Hoz Montañana, Rosa de; López Cuenca, Inés; García Martín, Elena Salobrar; Rojas Lozano, Pilar; Valiente Soriano, Francisco Javier; Avilés Trigueros, Marcelino; Villegas Pérez, María Paz; Vidal Sanz, Manuel; Triviño Casado, Alberto; Salazar Corral, Juan José; Ramirez Sebastian, Jose Manuel; Bagetta, Giacinto; Nucci, Carlo
    Glaucoma is an age-related neurodegenerative disease that begins at the onset of aging. In this disease, there is an involvement of the immune system and therefore of the microglia. The purpose of this study is to evaluate the microglial activation using a mouse model of ocular hypertension (OHT) at the onset of aging. For this purpose, we used both naive and ocular hypertensives of 15-month-old mice (early stage of aging). In the latter, we analyzed the OHT eyes and the eyes contralateral to them to compare them with their aged controls. In the eyes of aged naive, aged OHT and aged contralateral eyes, microglial changes were observed compared to the young mice, including: (i) aged naive vs young naive: An increased soma size and vertical processes; (ii) aged OHT eyes vs young OHT eyes: A decrease in the area of the retina occupied by Iba-1 cells and in vertical processes; and (iii) aged contralateral vs young contralateral: A decrease in the soma size and arbor area and an increase in the number of microglia in the outer segment layer. Aged OHT eyes and the eyes contralateral to them showed an up-regulation of the CD68 expression in the branched microglia and a down-regulation in the MHCII and P2RY12 expression with respect to the eyes of young OHT mice. Conclusion: in the early phase of aging, morphological microglial changes along with changes in the expression of MHCII, CD68 and P2RY12, in both naive and OHT mice. These changes appear in aged OHT eyes and the eyes contralateral to them eyes.
  • Item
    The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma
    (Frontiers in Aging Neuroscience, 2017) Ramírez Sebastián, Ana Isabel; Hoz Montañana, María Rosa de; García Martín, Elena Salobrar; Salazar Corral, Juan José; Rojas López, Blanca; Ajoy, Daniel; López Cuenca, Inés; Rojas, Pilar; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel
    Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
  • Item
    Retinal Molecular Changes Are Associated with Neuroinflammation and Loss of RGCs in an Experimental Model of Glaucoma
    (International Journal of Molecular Sciences, 2021) Fernández Arrabal, José A.; Salazar Corral, Juan José; Hoz Montañana, María Rosa de; Marco López, Eva María; Martín Sánchez, Beatriz; Flores Salguero, Elena; García Martín, Elena Salobrar; López Cuenca, Inés; Barrios Sabador, Vicente; Avilés Trigueros, Marcelino; Valiente Soriano, Francisco Javier; Miralles de Imperial-Ollero, Juan A.; Vidal Sanz, Manuel; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel; López Gallardo, Meritxell; Ramírez Sebastián, Ana Isabel
    Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-β at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1β at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1, 5, and 7 and a downregulation at 15 days; (iii) an upregulation of IL-10 at days 3 and 7; and (iv) an upregulation of IL-17 at day 15. In OHT eyes, there was a reduction in the Brn3a+ RGCs number at days 3, 5, 7, and 15. OHT changes cytokine levels in both OHT and contralateral eyes at different time points after OHT induction, confirming the immune system involvement in glaucomatous neurodegeneration.
  • Item
    Retinal Changes in Astrocytes and Müller Glia in a Mouse Model of Laser-Induced Glaucoma: A Time-Course Study
    (Biomedicines, 2022) Fernández Albarral, José Antonio; Hoz Montañana, María Rosa de; Matamoros, José A.; Chen, Leijing; López Cuenca, Inés; García Martín, Elena Salobrar; Sánchez Puebla, Lídia; Ramirez Sebastian, Jose Manuel; Triviño Casado, Alberto; Salazar Corral, Juan José; Ramírez Sebastián, Ana Isabel
    Macroglia (astrocytes and Müller glia) may play an important role in the pathogenesis of glaucoma. In a glaucoma mouse model, we studied the effects of unilateral laser-induced ocular hypertension (OHT) on macroglia in OHT and contralateral eyes at different time points after laser treatment (1, 3, 5, 8 and 15 days) using anti-GFAP and anti-MHC-II, analyzing the morphological changes, GFAP-labelled retinal area (GFAP-PA), and GFAP and MHC-II immunoreactivity intensities ((GFAP-IRI and MHC-II-IRI)). In OHT and contralateral eyes, with respect to naïve eyes, at all the time points, we found the following: (i) astrocytes with thicker somas and more secondary processes, mainly in the intermediate (IR) and peripheral retina (PR); (ii) astrocytes with low GFAP-IRI and only primary processes near the optic disc (OD); (iii) an increase in total GFAP-RA, which was higher at 3 and 5 days, except for at 15 days; (iv) an increase in GFAP-IRI in the IR and especially in the PR; (v) a decrease in GFAP-IRI near the OD, especially at 1 and 5 days; (vi) a significant increase in MHC-II-IRI, which was higher in the IR and PR; and (vii) the Müller glia were GFAP+ and MHC-II+. In conclusion, in this model of glaucoma, there is a bilateral macroglial activation maintained over time involved in the inflammatory glaucoma process.