Person:
Triviño Casado, Alberto

Loading...
Profile Picture
First Name
Alberto
Last Name
Triviño Casado
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Inmunología, Oftalmología y ORL
Area
Oftalmología
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Rod-Like Microglia Are Restricted to Eyes with Laser-Induced Ocular Hypertension but Absent from the Microglial Changes in the Contralateral Untreated Eye
    (Plos One, 2013) Hoz Montañana, María Rosa de; Gallego Collado, Beatriz Isabel; Ramírez Sebastián, Ana Isabel; Rojas López, María Blanca; Salazar Corral, Juan José; Valiente Soriano, Francisco Javier; Avilés Trigueros, Marcelino; Villegas Pérez, María Paz; Vidal Sanz, Manuel; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel
    In the mouse model of unilateral laser-induced ocular hypertension (OHT) the microglia in both the treated and the normotensive untreated contralateral eye have morphological signs of activation and up-regulation of MHC-II expression in comparison with naive. In the brain, rod-like microglia align to less-injured neurons in an effort to limit damage. We investigate whether: i) microglial activation is secondary to laser injury or to a higher IOP and; ii) the presence of rod-like microglia is related to OHT. Three groups of mice were used: age-matched control (naive, n=15); and two lasered: limbal (OHT, n=15); and non-draining portion of the sclera (scleral, n=3). In the lasered animals, treated eyes as well as contralateral eyes were analysed. Retinal whole-mounts were immunostained with antibodies against, Iba-1, NF-200, MHC-II, CD86, CD68 and Ym1. In the scleral group (normal ocular pressure) no microglial signs of activation were found. Similarly to naive eyes, OHT-eyes and their contralateral eyes had ramified microglia in the nerve-fibre layer related to the blood vessel. However, only eyes with OHT had rod-like microglia that aligned end-to-end, coupling to form trains of multiple cells running parallel to axons in the retinal surface. Rod-like microglia were CD68+ and were related to retinal ganglion cells (RGCs) showing signs of degeneration (NF-200+ RGCs). Although MHC-II expression was up-regulated in the microglia of the NFL both in OHT-eyes and their contralateral eyes, no expression of CD86 and Ym1 was detected in ramified or in rod-like microglia. After 15 days of unilateral lasering of the limbal and the non-draining portion of the sclera, activated microglia was restricted to OHT-eyes and their contralateral eyes. However, rod-like microglia were restricted to eyes with OHT and degenerated NF-200+ RGCs and were absent from their contralateral eyes. Thus, rod-like microglia seem be related to the neurodegeneration associated with HTO.
  • Item
    Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes
    (Progress in Brain Research, 2015) Ramírez Sebastián, Ana Isabel; Salazar Corral, Juan José; Hoz Montañana, María Rosa de; Rojas López, María Blanca; Gallego Collado, Beatriz Isabel; García Martín, Elena Salobrar; Valiente Soriano, Francisco Javier; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel; Bagetta, G.; Nucci, C.
    Most studies employing experimental models of unilateral glaucoma have used the normotensive contralateral eye as the normal control. However, some studies have recently reported the activation of the retinal macroglia and microglia in the uninjured eye, suggesting that the eye contralateral to experimental glaucoma should not be used as a control. This review analyzes the studies describing the contralateral findings and discusses some of the routes through which the signals can reach the contralateral eye to initiate the glial reactivation.
  • Item
    Retinal Molecular Changes Are Associated with Neuroinflammation and Loss of RGCs in an Experimental Model of Glaucoma
    (International Journal of Molecular Sciences, 2021) Fernández Arrabal, José A.; Salazar Corral, Juan José; Hoz Montañana, María Rosa de; Marco López, Eva María; Martín Sánchez, Beatriz; Flores Salguero, Elena; García Martín, Elena Salobrar; López Cuenca, Inés; Barrios Sabador, Vicente; Avilés Trigueros, Marcelino; Valiente Soriano, Francisco Javier; Miralles de Imperial-Ollero, Juan A.; Vidal Sanz, Manuel; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel; López Gallardo, Meritxell; Ramírez Sebastián, Ana Isabel
    Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-β at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1β at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1, 5, and 7 and a downregulation at 15 days; (iii) an upregulation of IL-10 at days 3 and 7; and (iv) an upregulation of IL-17 at day 15. In OHT eyes, there was a reduction in the Brn3a+ RGCs number at days 3, 5, 7, and 15. OHT changes cytokine levels in both OHT and contralateral eyes at different time points after OHT induction, confirming the immune system involvement in glaucomatous neurodegeneration.
  • Item
    IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma
    (Journal of Neuroinflammation, 2012) Gallego Collado, Beatriz Isabel; Salazar Corral, Juan José; Hoz Montañana, María Rosa de; Rojas López, María Blanca; Ramírez Sebastián, Ana Isabel; Salinas Navarro, Manuel Ángel; Ortín Martínez, Arturo; Valiente Soriano, Francisco Javier; Avilés Trigueros, Marcelino; Villegas Pérez, María Paz; Vidal Sanz, Manuel; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel
    Background Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified. Results In comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45). Conclusion The use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.
  • Item
    Retinal Changes in Astrocytes and Müller Glia in a Mouse Model of Laser-Induced Glaucoma: A Time-Course Study
    (Biomedicines, 2022) Fernández Albarral, José Antonio; Hoz Montañana, María Rosa de; Matamoros, José A.; Chen, Leijing; López Cuenca, Inés; García Martín, Elena Salobrar; Sánchez Puebla, Lídia; Ramirez Sebastian, Jose Manuel; Triviño Casado, Alberto; Salazar Corral, Juan José; Ramírez Sebastián, Ana Isabel
    Macroglia (astrocytes and Müller glia) may play an important role in the pathogenesis of glaucoma. In a glaucoma mouse model, we studied the effects of unilateral laser-induced ocular hypertension (OHT) on macroglia in OHT and contralateral eyes at different time points after laser treatment (1, 3, 5, 8 and 15 days) using anti-GFAP and anti-MHC-II, analyzing the morphological changes, GFAP-labelled retinal area (GFAP-PA), and GFAP and MHC-II immunoreactivity intensities ((GFAP-IRI and MHC-II-IRI)). In OHT and contralateral eyes, with respect to naïve eyes, at all the time points, we found the following: (i) astrocytes with thicker somas and more secondary processes, mainly in the intermediate (IR) and peripheral retina (PR); (ii) astrocytes with low GFAP-IRI and only primary processes near the optic disc (OD); (iii) an increase in total GFAP-RA, which was higher at 3 and 5 days, except for at 15 days; (iv) an increase in GFAP-IRI in the IR and especially in the PR; (v) a decrease in GFAP-IRI near the OD, especially at 1 and 5 days; (vi) a significant increase in MHC-II-IRI, which was higher in the IR and PR; and (vii) the Müller glia were GFAP+ and MHC-II+. In conclusion, in this model of glaucoma, there is a bilateral macroglial activation maintained over time involved in the inflammatory glaucoma process.