Person:
Castro Ruiz, Laura

Loading...
Profile Picture
First Name
Laura
Last Name
Castro Ruiz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Batch and Continuous Chromate and Zinc Sorption from Electroplating Effluents Using Biogenic Iron Precipitates
    (Minerals, 2021) Rocha, Fabiana; Muñoz Sánchez, Jesús Ángel; González González, Felisa; Blázquez Izquierdo, María Luisa; Castro Ruiz, Laura
    Nanoparticles of iron precipitates produced by a microbial consortium are a suitable adsorbent for metal removal from electroplating industry wastewaters. Biogenic iron precipitates were utilized as adsorbents for chromate and zinc in batch conditions. Furthermore, the iron precipitates were embedded in alginate beads for metal removal in fixed-bed columns, and their performance was evaluated in a continuous system by varying different operational parameters such as flow rate, bed height, and feeding system (down- and up-flows). The influence of different adsorption variables in the saturation time, the amount of adsorbed potentially toxic metals, and the column performance was investigated, and the shape of the breakthrough curves was analyzed. The optimal column performance was achieved by increasing bed height and by decreasing feed flow rate and inlet metal concentration. The up-flow system significantly improved the metal uptake, avoiding the preferential flow channels.
  • Item
    Selective biosorption and recovery of scandium using the alga Fucus vesiculosus
    (Minerals Engineering, 2024) Castro Ruiz, Laura; Abrahamyan, Nelly; Vardanyan, Nelly; González González, Felisa; Vardanyan, Narine; Muñoz Sánchez, Jesús Ángel
    The goal of this work was to study the viability of the application of biosorption using the brown alga Fucus vesiculosus in the recovery of scandium from red mud. The highest affinity of the biosorbent for scandium and aluminium was at pH 3. Sorption isotherms fitted to the Langmuir model for scandium and aluminium with adsorption capacities as high as 1.04 mmol·g−1 for both metals but with higher affinity for scandium than for aluminium. The performance of the biomass in fixed-bed columns was evaluated in different experimental conditions (flow rate, bed height and inlet metal concentration). Metal desorption was achieved with different inorganic and organic acids. After three consecutive sorption–desorption cycles using 0.1 N citric acid and deionized water during the regeneration step, the brown alga showed a progressive increase in scandium uptake due to the cross-linking citric acid and the alginate chains. The biomass was characterized before and after biosorption using Fourier transforms infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) coupled with an energy dispersive elemental analyser (EDS). The sorption involves different functional groups, such carboxylate and sulphonic groups by chelation and electrostatic interactions.
  • Item
    Bioleaching of Sulfide Minerals by Leptospirillum ferriphilum CC from Polymetallic Mine (Armenia)
    (Minerals, 2023) Vardanyan, Arevik; Khachatryan, Anna; Castro Ruiz, Laura; Willscher, Sabine; Gaydardzhiev, Stoyan; Zhang, Ruiyong; Vardanyan, Narine
    A strain of Leptospirillum sp. CC previously isolated from Akhtala polymetallic ore (Armenia) was studied. The main morphological and physiological characteristics of CC were revealed. The optimal growth temperature was 40 ◦C and optimal pH 1.5. A phylogenetic analysis based on 16S rRNA gene sequences (GenBank ID OM272948) showed that isolate CC was clustered with L. ferriphilum and possessed 99.8% sequence similarity with the strain L. ferriphilum OL12-2 (KF356024). The molar fraction of DNA (G + C) of the isolate was 58.5%. Bioleaching experiment indicates that L. ferriphilum CC can oxidize Fe(II) efficiently, and after 17 days, 44.1% of copper and 91.4% of iron are extracted from chalcopyrite and pyrite, respectively. The efficiency of L. ferriphilum CC in pyrite oxidation increases 1.7 times when co-cultivated with At. ferrooxidans ZnC. However, the highest activity in pyrite oxidation shows the association of L.ferriphilum CC with heterotrophic Acidocella sp. RBA bacteria. It was shown that bioleaching of copper and iron from chalcopyrite by association of L. ferriphilum CC, At. ferrooxidans ZnC, and At. albertensis SO-2 in comparison with pure culture L. ferriphilum CC for 21 days increased about 1.2 and 1.4–1.6 times, respectively.
  • Item
    Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes
    (Molecules, 2021) Blázquez Izquierdo, María Luisa; González González, Felisa; Muñoz Sánchez, Jesús Ángel; Castro Ruiz, Laura
    Biohydrometallurgy recovers metals through microbially mediated processes and has been traditionally applied for the extraction of base metals from low-grade sulfidic ores. New investigations explore its potential for other types of critical resources, such as rare earth elements. In recent times, the interest in rare earth elements (REEs) is growing due to of their applications in novel technologies and green economy. The use of biohydrometallurgy for extracting resources from waste streams is also gaining attention to support innovative mining and promote a circular economy. The increase in wastes containing REEs turns them into a valuable alternative source. Most REE ores and industrial residues do not contain sulfides, and bioleaching processes use autotrophic or heterotrophic microorganisms to generate acids that dissolve the metals. This review gathers information towards the recycling of REE-bearing wastes (fluorescent lamp powder, spent cracking catalysts, e-wastes, etc.) using a more sustainable and environmentally friendly technology that reduces the impact on the environment.
  • Item
    Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems
    (Metals, 2021) Ayala, Lesly Antonieta; Vardanyan, Arevik; Zhang, Ruiyong; Muñoz Sánchez, Jesús Ángel; Castro Ruiz, Laura
    Arsenic pollution in waters is due to natural and anthropogenic sources. Human exposure to arsenic is associated with acute health problems in areas with high concentrations of this element. Nanometric iron compounds with large specific surface areas and higher binding energy produced by some anaerobic microorganisms are thus expected to be more efficient adsorbents for the removal of harmful metals and metalloids than chemically produced iron oxides. In this study, a natural consortium from an abandoned mine site containing mainly Clostridium species was used to biosynthesize solid Fe(II) compounds, siderite (FeCO3) and iron oxides. Biogenic precipitates were used as adsorbents in contact with solutions containing arsenate and arsenite. The adsorption of As(V) fitted to the Langmuir model (qmax = 0.64 mmol/g, KL = 0.019 mmol/L) at the optimal pH value (pH 2), while the As(III) adsorption mechanism was better represented by the Freundlich model (KF = 0.476 L/g, n = 2.13) at pH 10. Water samples from the Caracarani River (Chile) with high contents of arsenic and zinc were treated with a biogenic precipitate encapsulated in alginate beads in continuous systems. The optimal operation conditions were low feed flow rate and the up-flow system, which significantly improved the contaminant uptake. This study demonstrates the feasibility of the application of biogenic iron compounds in the treatment of polluted waters.