Person:
Cuesta Martínez, Ángel

Loading...
Profile Picture
First Name
Ángel
Last Name
Cuesta Martínez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 6 of 6
  • Item
    Tumor Immunotherapy Using Gene-Modified Human Mesenchymal Stem Cells Loaded into Synthetic Extracellular Matrix Scaffolds
    (Stem Cells, 2009) Compte, Marta; Cuesta Martínez, Ángel; Sánchez-Martín, David; Alonso-Camino, Vanesa; Vicario, José Luís; Sanz, Laura; Álvarez-Vallina, Luís
    Mesenchymal stem cells (MSCs) are appealing as gene therapy cell vehicles given their ease of expansion and transduction. However, MSCs exhibit immunomodulatory and proangiogenic properties that may pose a risk in their use in anticancer therapy. For this reason, we looked for a strategy to confine MSCs to a determined location, compatible with a clinical application. Human MSCs genetically modified to express luciferase (MSCluc), seeded in a synthetic extracellular matrix (sECM) scaffold (sentinel scaffold) and injected subcutaneously in immunodeficient mice, persisted for more than 40 days, as assessed by bioluminescence imaging in vivo. MSCs modified to express a bispecific α-carcinoembryonic antigen (αCEA)/αCD3 diabody (MSCdAb) and seeded in an sECM scaffold (therapeutic scaffolds) supported the release of functional diabody into the bloodstream at detectable levels for at least 6 weeks after implantation. Furthermore, when therapeutic scaffolds were implanted into CEA-positive human colon cancer xenograft-bearing mice and human T lymphocytes were subsequently transferred, circulating αCEA/αCD3 diabody activated T cells and promoted tumor cell lysis. Reduction of tumor growth in MSCdAb-treated mice was statistically significant compared with animals that only received MSCluc. In summary, we report here for the first time that human MSCs genetically engineered to secrete a bispecific diabody, seeded in an sECM scaffold and implanted in a location distant from the primary tumor, induce an effective antitumor response and tumor regression.
  • Item
    Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA × anti-CD3 diabodies from lentivirally transduced human lymphocytes
    (Cancer Gene Therapy, 2007) Compte, Marta; Blanco, Bélen; Serrano, Fernando; Cuesta Martínez, Ángel; Sanz, Laura; Bernad, Antonio; Holliger, Philipp; Álvarez-Vallina, Luis
    Infiltrating T lymphocytes are found in many malignancies, but they appear to be mostly anergic and do not attack the tumor, presumably because of defective T-cell activation events. Recently, we described a strategy for the tumor-specific polyclonal activation of tumor-resident T lymphocytes based on the in situ production of recombinant bispecific antibodies (bsAbs) by transfected nonhematological cell lines. Here, we have constructed a novel HIV-1-based lentiviral vector for efficient gene transduction into various human hematopoietic cell types. Several myelomonocytic and lymphocytic cell lines secreted the anti-carcinoembryonic antigen (CEA) × anti-CD3 diabody in a functionally active form with CD3+ T-cell lines being the most efficient secretors. Furthermore, primary human peripheral blood lymphocytes (PBLs) were also efficiently transduced and secreted high levels of functional diabody. Importantly gene-modified PBLs significantly reduced in vivo tumor growth rates in xenograft studies. These results demonstrate, for the first time, the utility of lentiviral vectors for sustained expression of recombinant bsAbs in human T lymphocytes. Such T lymphocytes, transduced ex vivo to secrete the activating diabody in autocrine fashion, may provide a promising route for a gene therapy strategy for solid human tumor
  • Item
    Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies
    (Proceedings of the National Academy of Sciences (PNAS), 2013) Sánchez-Martín, David; Martínez-Torrecuadrada, Jorge; Teesalu, Tambet; Sugahara, Kazuki N.; Alvarez-Cienfuegos, Ana; Ximénez-Embún, Pilar; Fernández-Periáñez, Rodrigo; Martín, M. Teresa; Molina-Privado, Irene; Ruppen-Cañás, Isabel; Blanco-Toribio, Ana; Cañamero, Marta; Cuesta Martínez, Ángel; Compte, Marta; Kremer, Leonor; Bellas, Carmen; Alonso-Camino, Vanesa; Guijarro-Muñoz, Irene; Sanz,Laura; Ruoslahti, Erkki; Alvarez-Vallina, Luis
    Antibody cancer therapies rely on systemically accessible targets and suitable antibodies that exert a functional activity or deliver a payload to the tumor site. Here, we present proof-of-principle of in vivo selection of human antibodies in tumor-bearing mice that identified a tumor-specific antibody able to deliver a payload and unveils the target antigen. By using an ex vivo enrichment process against freshly disaggregated tumors to purge the repertoire, in combination with in vivo biopanning at optimized phage circulation time, we have identified a human domain antibody capable of mediating selective localization of phage to human prostate cancer xenografts. Affinity chromatography followed by mass spectrometry analysis showed that the antibody recognizes the proteasome activator complex PA28. The specificity of soluble antibody was confirmed by demonstrating its binding to the active human PA28αβ complex. Whereas systemically administered control phage was confined in the lumen of blood vessels of both normal tissues and tumors, the selected phage spread from tumor vessels into the perivascular tumor parenchyma. In these areas, the selected phage partially colocalized with PA28 complex. Furthermore, we found that the expression of the α subunit of PA28 [proteasome activator complex subunit 1 (PSME1)] is elevated in primary and metastatic human prostate cancer and used anti-PSME1 antibodies to show that PSME1 is an accessible marker in mouse xenograft tumors. These results support the use of PA28 as a tumor marker and a potential target for therapeutic intervention in prostate cancer.
  • Item
    In Vivo Tumor Targeting and Imaging with Engineered Trivalent Antibody Fragments Containing Collagen-Derived Sequences
    (Plos One, 2009) Cuesta Martínez, Ángel; Sánchez-Martín, David; Sanz, Laura; Bonet, Jaume; Compte, Marta; Kremer, Leonor; Blanco, Francisco J.; Oliva, Baldomero; Álvarez-Vallina, Luis; Christophe Egles
    There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed “trimerbody”, comprises a single-chain antibody (scFv) fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA), a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.
  • Item
    Enhanced antiangiogenic therapy with antibody‐collagen XVIII NC1 domain fusion proteins engineered to exploit matrix remodeling events
    (International Journal of Cancer, 2006) Sánchez‐Arévalo Lobo, Víctor J.; Cuesta Martínez, Ángel; Sanz, Laura; Compte, Marta; García, Pascal; Prieto, Jesús; Blanco, Francisco J.; Álvarez‐Vallina, Luis
    Antiangiogenic therapy is nowadays one of the most active fields in cancer research. The first strategies, aimed at inhibiting tumor vascularization, included upregulation of endogenous inhibitors and blocking of the signals delivered by angiogenic factors. But interaction between endothelial cells and their surrounding extracellular matrix also plays a critical role in the modulation of the angiogenic process. This study introduces a new concept to enhance the efficacy of antibody‐based antiangiogenic cancer therapy strategies, taking advantage of a key molecular event occurring in the tumor context: the proteolysis of collagen XVIII, which releases the endogenous angiogenesis inhibitor endostatin. By fusing the collagen XVIII NC1 domain to an antiangiogenic single‐chain antibody, a multispecific agent was generated, which was efficiently processed by tumor‐associated proteinases to produce monomeric endostatin and fully functional trimeric antibody fragments. It was demonstrated that the combined production in the tumor area of complementary antiangiogenic agents from a single molecular entity secreted by gene‐modified cells resulted in enhanced antitumor effects. These results indicate that tailoring recombinant antibodies with extracellular matrix‐derived scaffolds is an effective approach to convert tumor progression associated processes into molecular clues for improving antibody‐based therapies.
  • Item
    Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system
    (Gene Therapy, 2010) Compte, Marta; Alonso-Camino, Vanesa; Cuesta Martínez, Ángel; Santos-Valle, Patricia; Sánchez-Martín, David; López, Mariola; Vicario, José Luis ; Salas, Clara; Sanz, Laura; Álvarez-Vallina, Luis
    Several works have shown the feasibility of engineering functional blood vessels in vivo using human endothelial cells (ECs). Going further, we explored the therapeutic potential of neovessels after gene-modifying the ECs for the secretion of a therapeutic protein. Given that these vessels are connected with the host vascular bed, we hypothesized that systemic release of the expressed protein is immediate. As a proof of principle, we used primary human ECs transduced with a lentiviral vector for the expression of a recombinant bispecific αCEA/αCD3 antibody. These ECs, along with mesenchymal stem cells as a source of mural cells, were embedded in Matrigel and subcutaneously implanted in nude mice. High antibody levels were detected in plasma for 1 month. Furthermore, the antibody exerted a therapeutic effect in mice bearing distant carcinoembryonic-antigen (CEA)-positive tumors after inoculation of human T cells. In summary, we show for the first time the therapeutic effect of a protein locally secreted by engineered human neovessels.