Person:
Pedro Ormeño, Nuria De

Loading...
Profile Picture
First Name
Nuria De
Last Name
Pedro Ormeño
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Time-lag in feeding schedule acts as a stressor that alters circadian oscillators in goldfish
    (Frontiers in Physiology, 2018) Gómez Boronat, Miguel; Saiz Aparicio, Nuria; Delgado Saavedra, María Jesús; Pedro Ormeño, Nuria De; Isorna Alonso, Esther; Tort, Lluis
    The circadian system controls temporal homeostasis in all vertebrates. The light-dark (LD) cycle is the most important zeitgeber (“time giver”) of circadian system, but feeding time also acts as a potent synchronizer in the functional organization of the teleost circadian system. In mammals is well known that food intake during the rest phase promotes circadian desynchrony which has been associated with metabolic diseases. However, the impact of a misalignment of LD and feeding cycles in the entrainment of fish circadian oscillators is largely unknown. The objective of this work was to investigate how a time-lag feeding alters temporal homeostasis and if this could be considered a stressor. To this aim, goldfish maintained under a 12 h light-12 h darkness were fed at mid-photophase (SF6) or mid-scotophase (SF18). Daily rhythms of locomotor activity, clock genes expression in hypothalamus, liver, and head kidney, and circulating cortisol were studied. Results showed that SF6 fish showed daily rhythms of bmal1a and clock1a in all studied tissues, being in antiphase with rhythms of per1 genes, as expected for proper functioning clocks. The 12 h shift in scheduled feeding induced a short phase advance (4–5-h) of the clock genes daily rhythms in the hypothalamus, while in the liver the shift for clock genes expression rhythms was the same that the feeding time shift (∼12 h). In head kidney, acrophases of per genes underwent a 12-h shift in SF18 animals, but only 6 h shift for clock1a. Plasma cortisol levels showed a significant daily rhythm in animals fed at SF6, but not in SF18 fish fed, which displayed higher cortisol values throughout the 24-h. Altogether, results indicate that hypothalamus, liver, and head kidney oscillate in phase in SF6 fish, but these clocks are desynchronized in SF18 fish, which could explain cortisol alterations. These data reinforce the hypothesis that the misalignment of external cues (daily photocycle and feeding time) alters fish temporal homeostasis and it might be considered a stressor for the animals.
  • Item
    Insulin controls clock gene expression in the liver of goldfish probably via Pi3k/Akt pathway
    (International Journal of Molecular Sciences, 2023) Saiz Aparicio, Nuria; Velasco, Cristina; Pedro Ormeño, Nuria De; Soengas, José Luis; Isorna Alonso, Esther
    The liver circadian clock plays a pivotal role in driving metabolic rhythms, being primarily entrained by the feeding schedule, although the underlying mechanisms remain elusive. This study aimed to investigate the potential role of insulin as an intake signal mediating liver entrainment in fish. To achieve this, the expression of clock genes, which form the molecular basis of endogenous oscillators, was analyzed in goldfish liver explants treated with insulin. The presence of insulin directly increased the abundance of per1a and per2 transcripts in the liver. The dependency of protein translation for such insulin effects was evaluated using cycloheximide, which revealed that intermediate protein translation is seemingly unnecessary for the observed insulin actions. Furthermore, the putative interaction between insulin and glucocorticoid signaling in the liver was examined, with the results suggesting that both hormones exert their effects by independent mechanisms. Finally, to investigate the specific pathways involved in the insulin effects, inhibitors targeting PI3K/AKT and MEK/ERK were employed. Notably, inhibition of PI3K/AKT pathway prevented the induction of per genes by insulin, supporting its involvement in this process. Together, these findings suggest a role of insulin in fish as a key element of the multifactorial system that entrains the liver clock to the feeding schedule.
  • Item
    Assessing Chronodisruption Distress in Goldfish: The Importance of Multimodal Approaches
    (Animals, 2023) Saiz Aparicio, Nuria; Herrera-Castillo, Lisbeth; Pedro Ormeño, Nuria De; Delgado Saavedra, María Jesús; Arvidsson, Sven David; Marugal-López, Miguel Ángel; Isorna Alonso, Esther; MDPI
    Chronodisruption caused by factors such as light at night and mistimed meals has been linked to numerous physiological alterations in vertebrates and may be an anxiogenic factor affecting welfare. This study aims to investigate whether chronodisruption causes measurable changes in the anxiety responses of goldfish under two conditions: randomly scheduled feeding (RF) and continuous light (LL). Anxiety-like behavior was assessed in the open field with object approach and black/white preference tests, which had been validated using diazepam. An increased thigmotaxis response and decreased object exploration under both chronodisruption protocols indicated anxiety states. Furthermore, locomotor activity was increased in LL fish. The black/white preference test discriminated anxiolysis induced by diazepam but was unable to detect anxiety caused by chronodisruption. Plasma cortisol increased in both RF and LL fish throughout the experiment, confirming that both conditions caused stress. The LL fish also showed an apparently desensitized hypothalamus–pituitary–interrenal HPI axis, with a decrease in pomc and crf expression. Individual analysis found no correlation between anxiety-like behavior and stress axis activation nor between scototaxis and thigmotaxis responses. However, individual differences in sensitivity to each test were detected. Altogether, these results highlight circadian disruption as a stressor for fish and endorse a multiple variable approach for reliably assessing animal discomfort.