Person:
Lora Maroto, Beatriz

Loading...
Profile Picture
First Name
Beatriz
Last Name
Lora Maroto
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Circularly Polarized Luminescence from Simple Organic Molecules
    (Chemistry: a european journal, 2015) Márquez Sánchez-Carnerero, Esther María; Rodríguez Agarrabeitia, Antonia; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Muller, Gilles; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    This article aims to show the identity of “circularly polarized luminescent active simple organic molecules” as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.
  • Item
    Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral O-BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores
    (Journal of the American Chemical Society, 2014) Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Vo, Bryan G.; Muller, Gilles; Moya Cerero, Santiago De La
    Circularly polarized luminescence (CPL) in simple (small, nonaggregated, nonpolymeric) O-BODIPYs(R)-1 and (S)-1 by irradiation with visible light is first detected as proof of the ability of a new structural design to achieve CPL from inherently achiral monochromophore systems in simple organic molecules. The measured level of CPL (|glum|) in solution falls into the usual range of that obtained from other simple organic molecules (10−5−10−2range), but the latter having more complex architectures since axially chiral chromophores or multichromophore systems are usually required. The new design is based on chirally perturbing the acting achiral chromophore by orthogonally tethering a single axially chiral 1,1′-binaphtyl moiety to it. The latter does not participate as a chromophore in the light-absorption/emission phenom-enon. This simple design opens up new perspectives for the future development of new small-sized CPL organic dyes (e.g., those based on other highly luminescent achiral chromophores and/or chirally perturbing moieties), as well as for the improvement of the CPL properties of the organic molecules spanning their use in photonic applications.
  • Item
    Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence
    (Chemistry: a european journal, 2016) Ray Leiva, César; Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; López Arbeloa, Íñigo María; Bañuelos Prieto, Jorge; Cohovi, Komlan D.; Lunkley, jamie L.; Muller, Gilles; Moya Cerero, Santiago De La
    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.
  • Item
    Dissimilar-at-boron N-BODIPYs: from light-harvesting multichromophoric arrays to CPL-bright chiral-at-boron BODIPYs
    (Organic Chemistry Frontiers, 2023) Ray, César; Avellanal-Zaballa, Edurne; Muñoz Úbeda, Mónica; Colligan, Jessica; Moreno Jiménez, Florencio; Muller, Gilles ; López Montero, Iván; Bañuelos, Jorge; Lora Maroto, Beatriz; Moya Cerero, Santiago De La
    We report a workable and easy approach for the direct post-multifunctionalization of common BODIPYs (F-BODIPYs) with minimal interference to the starting photophysical behavior. It entails the easy transformation of an F-BODIPY into the corresponding N-BODIPY by using a dissimilarly-N,N′-disubstituted bis(sulfonamide), which is easily obtained from ethane-1,2-diamine. This approach is exemplified by the rapid synthesis of a selected battery of unprecedented dissimilar-at-boron N-BODIPYs, which are rationally designed to act as efficient multichromophoric arrays for light harvesting by excitation energy transfer, as specific bioprobes for fluorescent imaging, or as efficient chiroptical dyes exhibiting visible circular dichroism and circularly polarized luminescence. Noticeably, this approach has led to the synthesis of the first CPL-bright chiral-at-boron BODIPYs, a significant novelty in BODIPY chemistry and CPL emitters