Person:
Rodríguez Escudero, María Isabel

Loading...
Profile Picture
First Name
María Isabel
Last Name
Rodríguez Escudero
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Microbiología y Parasitología
Area
Microbiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 6 of 6
  • Item
    Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.
    (PloS one, 2016) Cid, Víctor J.; Molina, María; Schulze Luehrmann, Jan; Lührmann, Anja; Rodríguez Escudero, María Isabel
    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.
  • Item
    Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae.
    (Scientific Reports, 2018) Rodríguez Escudero, María Isabel; Fernández-Acero Bascones, Teresa; Jiménez Cid, Víctor; Molina, María
    The Akt protein kinase is the main transducer of phosphatidylinositol-3,4,5-trisphosphate (PtdIns3,4,5P) signaling in higher eukaryotes, controlling cell growth, motility, proliferation and survival. By co-expression of mammalian class I phosphatidylinositol 3-kinase (PI3K) and Akt in the Saccharomyces cerevisiae heterologous model, we previously described an inhibitory effect on yeast growth that relied on Akt kinase activity. Here we report that PI3K-Akt expression in yeast triggers the formation of large plasma membrane (PM) invaginations that were marked by actin patches, enriched in PtdIns4,5P and associated to abnormal intracellular cell wall deposits. These effects of Akt were mimicked by overproduction of the PtdIns4,5P effector Slm1, an adaptor of the Ypk1 and Ypk2 kinases in the TORC2 pathway. Although Slm1 was phosphorylated in vivo by Akt, TORC2-dependent Ypk1 activation did not occur. However, PI3K-activated Akt suppressed the lethality derived from inactivation of either TORC2 or Ypk protein kinases. Thus, heterologous co-expression of PI3K and Akt in yeast short-circuits PtdIns4,5P- and TORC2-signaling at the level of the Slm-Ypk complex, overriding some of its functions. Our results underscore the importance of phosphoinositide-dependent kinases as key actors in the homeostasis and dynamics of the PM.
  • Item
    A yeast-based in vivo bioassay to screen for class I phosphatidylinositol 3-kinase specific inhibitors.
    (Journal of biomolecular screening, 2012) Fernández-Acero Bascones, Teresa; Rodríguez Escudero, María Isabel; Vicente, Francisca; Monteiro, Maria Cândida; Tormo, José R.; Cantizani, Juan; Molina, María; Cid, Víctor J.
    The phosphatidylinositol 3-kinase (PI3K) pathway couples receptor-mediated signaling to essential cellular functions by generating the lipid second messenger phosphatidylinositol-3,4,5-trisphosphate. This pathway is implicated in multiple aspects of oncogenesis. A low-cost bioassay that readily measures PI3K inhibition in vivo would serve as a valuable tool for research in this field. Using heterologous expression, we have previously reconstituted the PI3K pathway in the model organism Saccharomyces cerevisiae. On the basis of the fact that the overproduction of PI3K is toxic in yeast, we tested the ability of commercial PI3K inhibitors to rescue cell growth. All compounds tested counteracted the PI3K-induced toxicity. Among them, 15e and PI-103 were the most active. Strategies to raise the intracellular drug concentration, specifically the use of 0.003% sodium dodecyl sulfate and the elimination of the Snq2 detoxification pump, optimized the bioassay by enhancing its sensitivity. The humanized yeast-based assay was then tested on a pilot scale for high-throughput screening (HTS) purposes using a collection of natural products of microbial origin. From 9600 extracts tested, 0.6% led to a recovery of yeast growth reproducibly, selectively, and in a dose-dependent manner. Cumulatively, we show that the developed PI3K inhibition bioassay is robust and applicable to large-scale HTS.
  • Item
    A pathogenic role for germline PTEN variants which accumulate into the nucleus.
    (European journal of human genetics, 2018) Mingo, Janire; Rodríguez Escudero, María Isabel; Luna, Sandra; Fernández Acero, Teresa; Amo, Laura; Jonasson, Amy R; Zori, Roberto T; López, José I; Molina, María; Cid, Víctor J.; Pulido, Rafael
    The PTEN gene encodes a master regulator protein that exerts essential functions both in the cytoplasm and in the nucleus. PTEN is mutated in the germline of both patients with heterogeneous tumor syndromic diseases, categorized as PTEN hamartoma tumor syndrome (PHTS), and a group affected with autism spectrum disorders (ASD). Previous studies have unveiled the functional heterogeneity of PTEN variants found in both patient cohorts, making functional studies necessary to provide mechanistic insights related to their pathogenicity. Here, we have functionally characterized a PTEN missense variant [c.49C>G; p.(Gln17Glu); Q17E] associated to both PHTS and ASD patients. The PTEN Q17E variant displayed partially reduced PIP3-catalytic activity and normal stability in cells, as shown using S. cerevisiae and mammalian cell experimental models. Remarkably, PTEN Q17E accumulated in the nucleus, in a process involving the PTEN N-terminal nuclear localization sequence. The analysis of additional germline-associated PTEN N-terminal variants illustrated the existence of a PTEN N-terminal region whose targeting in disease causes PTEN nuclear accumulation, in parallel with defects in PIP3-catalytic activity in cells. Our findings highlight the frequent occurrence of PTEN gene mutations targeting PTEN N-terminus whose pathogenicity may be related, at least in part, with the retention of PTEN in the nucleus. This could be important for the implementation of precision therapies for patients with alterations in the PTEN pathway.
  • Item
    Yeast-based methods to assess PTEN phosphoinositide phosphatase activity in vivo
    (Methods, 2015) Rodríguez Escudero, María Isabel; Fernández-Acero Bascones, Teresa; Bravo, Ignacio; Leslie, Nicholas R.; Pulido, Rafael; Molina, María; Jiménez Cid, Víctor
    The PTEN phosphoinositide 3-phosphatase is a tumor suppressor commonly targeted by pathologic missense mutations. Subject to multiple complex layers of regulation, its capital role in cancer relies on its counteracting function of class I phosphoinositide 3-kinase (PI3K), a key feature in oncogenic signaling pathways. Precise assessment of the involvement of PTEN mutations described in the clinics in loss of catalytic activity requires either tedious in vitro phosphatase assays or in vivo experiments involving transfection into mammalian cell lines. Taking advantage of the versatility of the model organism Saccharomyces cerevisiae, we have developed different functional assays by reconstitution of the mammalian PI3K-PTEN switch in this lower eukaryote. This methodology is based on the fact that regulated PI3K expression in yeast cells causes conversion of PtdIns(4,5)P2 in PtdIns(3,4,5)P3 and co-expression of PTEN counteracts this effect. This can be traced by monitoring growth, given that PtdIns(4,5)P2 pools are essential for the yeast cell, or by using fluorescent reporters amenable for microscopy or flow cytometry. Here we describe the methodology and review its application to evaluate the functionality of PTEN mutations. We show that the technique is amenable to both directed and systematic structure-function relationship studies, and present an example of its use for the study of the recently discovered PTEN-L variant
  • Item
    The yeast cell wall integrity pathway signals from recycling endosomes upon elimination of phosphatidylinositol (4,5)-bisphosphate by mammalian phosphatidylinositol 3-kinase.
    (Cellular signalling, 2015) Fernández-Acero Bascones, Teresa; Rodríguez Escudero, María Isabel; Molina, María; Jiménez Cid, Víctor
    Phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is essential for recognition of the plasma membrane inner leaf by protein complexes. We expressed mammalian class I phosphoinositide 3-kinase (PI3K) in Saccharomyces cerevisiae to eliminate PtdIns(4,5)P2 by its conversion into PtdIns(3,4,5)P3, a lipid naturally missing in this yeast. This led to loss of actin function and endocytosis defects, causing a blockage in polarized secretion. Also, the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway was activated, triggering a typical transcriptional response. In the absence of PtdIns(4,5)P2 at the plasma membrane, the Pkc1 protein kinase upstream the CWI MAPK module localized to post-Golgi endosomes marked by SNARE Snc1 and Rab GTPases Ypt31 and Ypt32. Other components at the head of the pathway, like the mechanosensor Wsc1, the GTPase Rho1 and its activator the GDP/GTP exchange factor Rom2, co-localized with Pkc1 in these compartments. Chemical inhibition of PI3K proved that both CWI activation and Pkc1 relocation to endosomes are reversible. These results suggest that the CWI pathway is able to respond to loss of plasma membrane identity from recycling endosomes.