Person:
Losada Doval, Teresa

Loading...
Profile Picture
First Name
Teresa
Last Name
Losada Doval
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Revisiting the CMIP5 Thermocline in the Equatorial Pacific and Atlantic Oceans
    (Geophysical Research Letters, 2018) Castaño Tierno, Antonio; Mohino Harris, Elsa; Rodríguez De Fonseca, María Belén; Losada Doval, Teresa
    The thermocline is defined as the ocean layer for which the vertical thermal gradient is maximum. In the equatorial ocean, observations led to the use of the 20 °C isotherm depth (z20) as an estimate of the thermocline. This study compares z20 against the physical thermocline in the equatorial Atlantic and Pacific Oceans, using Simple Ocean Data Assimilation reanalysis and fifth phase of the Coupled Model Intercomparison Project preindustrial control simulations. Our results show that z20 is systematically deeper and flatter than the thermocline and does not respond correctly to surface wind stress variations. It is also shown that the annual cycle of z20 is much weaker than that of the physical thermocline. This happens in both equatorial basins and indicates that z20 does not react to the same mechanisms as the thermocline. This could have important consequences in the assessment of air-sea coupling in current general circulation models and bias reduction strategies.
  • Item
    A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal
    (Atmosphere, 2016) Rodríguez De Fonseca, María Belén; Suárez Moreno, Roberto; Ayarzagüena Porras, Blanca; López Parages, Jorge; Gómara Cardalliaguet, Íñigo; Villamayor Moreno, Julián; Mohino Harris, Elsa; Losada Doval, Teresa; Castaño Tierno, Antonio
    The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.