Person:
Losada Doval, Teresa

Loading...
Profile Picture
First Name
Teresa
Last Name
Losada Doval
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Impacts of the Atlantic Equatorial Mode in a warmer climate
    (Climate dynamics, 2015) Mohino Harris, Elsa; Losada Doval, Teresa
    The main source of sea surface temperature (SST) variability in the Tropical Atlantic at interannual time scales is the Equatorial Mode or Atlantic El Niño. It has been shown to affect the adjacent continents and also remote regions, leading to a weakened Indian Monsoon and promoting La Niña-type anomalies over the Pacific. However, its effects in a warmer climate are unknown. This work analyses the impact of the Equatorial Mode at the end of the twenty first century by means of sensitivity experiments with an atmosphere general circulation model. The prescribed boundary conditions for the future climate are based on the outputs from models participating in the coupled model intercomparison project-phase V. Our results suggest that even if the characteristics of the Equatorial Mode at the end of the twenty first century remained equal to those of the twentieth century, there will be an eastward shift of the main rainfall positive anomalies in the Tropical Atlantic and a weakening of the negative rainfall anomalies over the Asian monsoon due to the change in climatological SSTs. We also show that extratropical surface temperature anomalies over land related to the mode will change in regions like Southwestern Europe, East Australia, Asia or North America due to the eastward shift of the sea level pressure systems and related surface winds.
  • Item
    Secular Variability of the Upwelling at the Canaries Latitude: An Instrumental Approach
    (Journal of geophysical research-oceans, 2022) Gallego, D.; García Herrera, Ricardo; Mohino Harris, Elsa; Losada Doval, Teresa; Rodríguez de Fonseca, María Belén
    In this research we make use of historical wind direction observations to assemble an instrumental upwelling intensity index (the so-called Directional Upwelling Index [DUI]) for the coast of Northwest Africa between 26 degrees and 33 degrees N and from 1825 to 2014. The DUI is defined as the persistence of the alongshore winds at the coast and unlike other upwelling indices, it relies on observed wind direction solely, avoiding the suspected bias toward increasing wind speed of historical wind observations documented in previous research. We have found that between June and October, when the upwelling intensity in the area is at its seasonal maximum, the persistence of the north-easterlies measured by the DUI is significantly related to the alongshore wind stress and subsequently with Sea Surface Temperature anomalies at the coast of NW Africa. The analysis of the DUI record does not display a consistent long-term trend but an oscillatory behavior. At interannual time scales this variability can be linked to the changes in the strength and location of the subtropical north Atlantic high-pressure center and at multidecadal scales, the upwelling seems mainly driven by the Atlantic Multidecadal Variability through the modulation exerted by this climatic pattern on the intensity of the Saharan low.
  • Item
    Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa
    (Climate dynamics, 2018) Gómara Cardalliaguet, Íñigo; Mohino Harris, Elsa; Losada Doval, Teresa; Domínguez, Marta; Suárez Moreno, Roberto; Rodríguez Fonseca, María Belén
    West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979-2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Nio-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO-WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED-WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM-WAM teleconnection, which cannot be isolated for the 1979-2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.
  • Item
    The Teleconnection of the Tropical Atlantic to Indo-Pacific Sea Surface Temperatures on Inter-Annual to Centennial Time Scales: A Review of Recent Findings
    (Atmosphere, 2016) Kucharski, Fred; Parvin, Afroja; Rodríguez de Fonseca, María Belén; Farneti, Riccardo; Martín Rey, Marta; Polo Sánchez, Irene; Mohino Harris, Elsa; Losada Doval, Teresa; Mechoso, Carlos R.
    In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Nino (Nina) event leads to rising (sinking) motion in the Atlantic region, which is compensated by sinking (rising) motion in the central-western Pacific. The sinking (rising) motion in the central-western Pacific induces easterly (westerly) surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling) Kelvin-waves, where they increase the probability for a La Nina (El Nino) event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Nina/El Nino development. At multidecadal time scales, a positive (negative) Atlantic Multidecadal Oscillation leads to a cooling (warming) of the eastern Pacific and a warming (cooling) of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO_2 increase and to a strong subsurface cooling.
  • Item
    A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal
    (Atmosphere, 2016) Rodríguez de Fonseca, María Belén; Suárez Moreno, Roberto; Ayarzagüena Porras, Blanca; López Parages, Jorge; Gómara Cardalliaguet, Iñigo; Villamayor Moreno, Julián; Mohino Harris, Elsa; Losada Doval, Teresa; Castaño Tierno, Antonio
    The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.