Person:
López Cabarcos, Enrique

Loading...
Profile Picture
First Name
Enrique
Last Name
López Cabarcos
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Química en Ciencias Farmacéuticas
Area
Química Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Control of upconversion luminescence by gold nanoparticle size: from quenching to enhancement
    (Nanoscale, 2019) Méndez González, Diego; Melle Hernández, Sonia; Gómez Calderón, Óscar; Laurenti, Marco; Cabrera Granado, Eduardo; Egatz-Gómez, Ana; López Cabarcos, Enrique; Rubio Retama, Jorge; Díaz García, Elena
    Metallic nanostructures have the potential to modify the anti-Stokes emission of upconverting nanoparticles (UCNPs) by coupling their plasmon resonance with either the excitation or the emission wavelength of the UCNPs. In this regard gold nanoparticles (AuNPs) have often been used in sensors for UCNP luminescence quenching or enhancement, although systematic studies are still needed in order to design optimal UCNP–AuNP based biosensors. Amidst mixed experimental evidence of quenching or enhancement, two key factors arise: the nanoparticle distance and nanoparticle size. In this work, we synthesize AuNPs of different sizes to assess their influence on the luminescence of UCNPs. We find that strong luminescence quenching due to resonance energy transfer is preferentially achieved for small AuNPs, peaking at an optimal size. A further increase in the AuNP size is accompanied by a reduction of luminescence quenching due to an incipient plasmonic enhancement effect. This enhancement counterbalances the luminescence quenching effect at the biggest tested AuNP size. The experimental findings are theoretically validated by studying the decay rate of the UCNP emitters near a gold nanoparticle using both a classical phenomenological model and the finite-difference time-domain method. Results from this study establish general guidelines to consider when designing sensors based on UCNPs–AuNPs as donor–quencher pairs, and suggest the potential of plasmon-induced luminescence enhancement as a sensing strategy.
  • Item
    FRET distance dependence from upconverting nanoparticles to quantum dots
    (Journal of physical chemistry C, 2018) Melle Hernández, Sonia; Gómez Calderón, Óscar; Laurenti, Marco; Méndez González, Diego; Egatz-Gómez, Ana; López Cabarcos, Enrique; Cabrera Granado, Eduardo; Díaz García, Elena; Rubio Retama, Jorge
    Förster resonant energy transfer (FRET) with upconverting nanoparticles (UCNPs) as donors and quantum dots (QDs) as acceptors has been regarded as a promising tool for biosensing applications. In this work, we use time-resolved fluorescence spectroscopy to analyze the UCNP-to-QD FRET and we focus on the most relevant parameter of the FRET phenomenon, UCNP-QD distance. This distance is controlled by a nanometric silica shell around the UCNP surface. We theoretically reproduce the experimental results applying FRET theory to the distribution of emitting erbium ions in the UCNP. This simple model allows us to estimate the contribution of every erbium ion to the final FRET response and to explore different strategies to improve FRET efficiency.
  • Item
    Contribution of resonance energy transfer to the luminescence quenching of upconversion nanoparticles with graphene oxide
    (Journal of Colloid and Interface Science, 2020) Méndez González, Diego; Gómez Calderón, Óscar; Melle Hernández, Sonia; González Izquierdo, Jesús; Bañares Morcillo, Luis; López Díaz, David; Velazquez Salicio, M. Mercedes; López Cabarcos, Enrique; Rubio Retama, Benito Jorge; Laurenti, Marco
    Upconversion nanoparticles (UCNP) are increasingly used due to their advantages over conventional fluorophores, and their use as resonance energy transfer (RET) donors has permitted their application as biosensors when they are combined with appropriate RET acceptors such as graphene oxide (GO). However, there is a lack of knowledge about the design and influence that GO composition produces over the quenching of these nanoparticles that in turn will define their performance as sensors. In this work, we have analysed the total quenching efficiency, as well as the actual values corresponding to the RET process between UCNPs and GO sheets with three different chemical compositions. Our findings indicate that excitation and emission absorption by GO sheets are the major contributor to the observed luminescence quenching in these systems. This challenges the general assumption that UCNPs luminescence deactivation by GO is caused by RET. Furthermore, RET efficiency has been theoretically calculated by means of a semiclassical model considering the different nonradiative energy transfer rates from each Er3+ ion to the GO thin film. These theoretical results highlight the relevance of the relative positions of the Er3+ ions inside the UCNP with respect to the GO sheet in order to explain the RET-induced efficiency measurements.