Person:
Rodríguez Berriguete, Álvaro

Loading...
Profile Picture
First Name
Álvaro
Last Name
Rodríguez Berriguete
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Mineralogía y Petrología
Area
Petrología y Geoquímica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Chabazite and dolomite formation in a dolocrete profile an example of complex alkaline paragenesis in Lanzarote, Canary Islands
    (Sedimentary geology, 2016) Alonso Zarza, Ana María; Bustamante, Leticia; Huerta, Pedro; Rodríguez Berriguete, Álvaro; Huertas Coronel, María José
    This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.
  • Item
    Gypsum speleothems in lava tubes from Lanzarote (Canary Islands). Ion sources and pathways
    (Sedimentary Geology, 2019) Huerta, Pedro; Martín Pérez, Andrea; Martín García, Rebeca; Rodríguez Berriguete, Álvaro; La Iglesia, Á.; Alonso Zarza, Ana María
    Lava tubes from Lanzarote Island in the Canary Archipelago commonly show white speleothems that stand out from the black basaltic rock. Mineralogical analyses of the speleothems from El Covón and Chifletera lava tubes show that gypsum is the dominant mineral with minor amounts of halite. Speleothems composed of microcrystalline gypsum (up to 150 μm long) are: coatings, globules, or extensive white powder accumulations covering the tube floor. Those composed of macrocrystalline gypsum with millimetric-size tabular and lenticular crystals are: crusts and stalactites. Uranium series dating of speleothems show ages ranging from 6217 ± 1644 yr to 40,039 ± 4748 yr. δ34S and the δ18O of gypsum speleothems (δ34S is 20.97‰ V-CDT and δ18O is 9.78‰ V-SMOW) is similar to that of sulphate dissolved in seawater. 87Sr/86Sr from speleothems (0.708665–0.708976) suggests that the main source of Ca is seawater, but additional Ca contributions from aeolian dust have reduced the Sr isotope values. These data support the idea that gypsum precipitates in the lava tube by evaporation of marine spray or solutions derived from marine spray. Two probable vias for ions input into the lava tube are considered: 1) sea spray circulating through the lava tube; 2) low-frequency rain infiltration leaching the marine spray salts precipitated at the surface. The constant supply of ions from sea spray, air currents in the cave, and the fast, but partial, evaporation due to the high relative humidity in the lava tube favours accumulation of major amounts of gypsum and subordinately halite. Scarcity of precipitation in the western Canary Islands prevents dissolution of gypsum speleothems.
  • Item
    Lacustrine microbialite pinnacles in the Palaeogene of Patagonia, Argentina: Facies and controls
    (Sedimentary Geology, 2020) Alonso Zarza, Ana María; Cabaleri, Nora G.; Huerta, Pedro; Armella, Claudia; Rodríguez Berriguete, Álvaro; Monferran, Mateo D.; Gallego, Oscar F.; Ubaldon, María Cecilia; Silva Nieto, Diego
    Large carbonate microbialite build-ups are relatively uncommon in ancient fresh-water lacustrine basins as compared with those marine and saline environments. This paper discusses the formation of a large continental lacustrine deposit, the Oligocene-Miocene Carinao Formation in Argentina, which contains large bioherms. The lacustrine formation occurs in N-S corridor and is mostly composed by meter scale pinnacles and sheet-like carbonate beds that grade to detrital deposits towards the more subsident southern areas. The main facies are autochthonous and allochthonous limestones and detrital deposits. The autochthonous limestones include the carbonate pinnacles, which are about 4 m high and 0.5 m in diameter and coalesce laterally to form very continuous beds (several kms). The pinnacles are formed by plate-like, dome, vertically elongated and irregular horizontal bioherms, most of them with radial structure. The bioherms are boundstones of fibrous (fans and spherulites) and feather calcite crystals, micrite and inequigranular calcite mosaics. Both biogenic and abiogenic processes interfered in carbonate precipitation. Allochthonous limestones include peloidal, ostracod and intraclastic limestones, some containing coated grains. Polymictic conglomerates and cross-bedded hybrid arenites deposited in a fluvial-deltaic system located at the southwest of the basin. δ13C values vary between −0.4 and −3.2‰ VPDB and δ18O are comprised between −5.7 and −8.6‰ VPDB. The 87Sr/86Sr ratios range between 0.7061 and 0.7056. The Carinao Formation deposited in a fresh-water lake, sourced by meteoric and deep-groundwater. Tectonics was a main control determining the configuration of the lake system, the water supply and the alignment of some bioherms. The vertical succession or the different bioherms morphologies reflects well the lake level changes controlled by both tectonic and climate.
  • Item
    The role of climate and aeolian dust input in calcrete formation in volcanic islands (Lanzarote and Fuerteventura, Spain)
    (Palaeogeography, Palaeoclimatology, Palaeoecology, 2015) Huerta, Pedro; Rodríguez Berriguete, Álvaro; Martín García, Rebeca; Martín Pérez, Andrea; La Iglesia Fernández, Ángel; Alonso Zarza, Ana María
    Calcretes are widely described in non-marine settings with carbonates in their catchment, or vicinity areas, but in volcanic islands without carbonates in their substrate, calcretes are not very common. In Lanzarote and Fuerteventura Canary Islands, characterized by impressive volcanic landscapes, the sedimentary carbonate rocks are rare except for some recent marine and aeolian deposits. In these settings very well-developed calcretes cover large areas of the present landscape. The source of calcium required for the formation of these calcretes has not been discussed in much detail till now, although its role is critical to an understanding of the climatic conditions in which calcium was transported and fixed and of the calcrete formation processes. The petrological and geochemical studies (87Sr/86Sr ratios, δ13C, δ18O, major, trace and REE) carried out in this paper do confirm the important role of aeolian dust input in the formation of these calcretes. Canarian calcretes were mainly generated by pedogenic processes and are composed of various irregular carbonate lamina interbedded with fine clastic deposits. Our study indicates that these interbeddings were the result of several stages in which, during dry periods, aeolian dust deposition alternated with leaching and calcite precipitation during wetter periods when plants, insects and bacteria played an important role in carbonate precipitation. The δ18O (− 2.70 to + 2.22‰ VPDB) and δ13C (− 8.21 to + 0.24‰ VPDB) values indicate that calcretes were formed by pedogenic processes. Comparison of calculated ∆18O values for the Canary calcretes with continental mid-latitude calcrete values reflects the more homogeneous temperature regimes of calcrete formation in island (oceanic) settings. Calcrete87Sr/86Sr ratios (0.706357 to 0.709208) show strong affinity with those obtained in aeolian carbonate dust and marine deposits, and are relatively different from those obtained in basalts. REE, major and trace element concentrations show that Ca-bearing minerals from volcanic host rock contributed little to calcrete formation and most of the calcium was supplied by aeolian deposits such as the aeolian dust coming from the Sahara and Sahel or sand dunes.