Person:
Bragado Domingo, Paloma

Loading...
Profile Picture
First Name
Paloma
Last Name
Bragado Domingo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    New and Old Key Players in Liver Cancer
    (International Journal of Molecular Sciences, 2023) Cuesta Martínez, Ángel; Palao, Nerea; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu; Porras Gallo, María Almudena
    Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
  • Item
    Met signaling in cardiomyocytes is required for normal cardiac function in adult mice
    (Biochimica et Biophysica Acta (Molecular Basis of disease), 2013) Arechederra Calderón, María; Carmona Mejías, Rita; González-Nuñez, María; Gutiérrez Uzquiza, Álvaro; Bragado Domingo, Paloma; Cruz-González, Ignacio; Cano Rincón, Elena; Guerrero Arroyo, María Del Carmen; Sánchez Muñoz, Aranzazu; López-Novoa, José Miguel; Schneider, Michael D.; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras Gallo, María Almudena
    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.
  • Item
    New and Old Key Players in Liver Cancer
    (International Journal of Molecular Sciences, 2023) Cuesta Martínez, Ángel; Palao, Nerea; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu; Porras Gallo, María Almudena; Arechederra, Maria; Tarantino, Giovanni; Berasain, Carmen
    Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
  • Item
    c-Met Signaling Is Essential for Mouse Adult Liver Progenitor Cells Expansion After Transforming Growth Factor-β-Induced Epithelial–Mesenchymal Transition and Regulates Cell Phenotypic Switch
    (Stem Cells, 2019) Almale Del Barrio, Laura; García-Álvaro, María; Martínez-Palacián, Adoración; García-Bravo, María; Lazcanoiturburu, Nerea; Addante, Annalisa; Roncero Romero, Cesáreo; Sanz Ortega, Julián; López, María de la O; Bragado Domingo, Paloma; Mikulits, Wolfgang; Factor, Valentina M.; Thorgeirsson, Snorri S.; Ignacio, Casal, J.; Segovia, José-Carlos; Rial, Eduardo; Fabregat Romero, María Isabel; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu
    Adult hepatic progenitor cells (HPCs)/oval cells are bipotential progenitors that participate in liver repair responses upon chronic injury. Recent findings highlight HPCs plasticity and importance of the HPCs niche signals to determine their fate during the regenerative process, favoring either fibrogenesis or damage resolution. Transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) are among the key signals involved in liver regeneration and as component of HPCs niche regulates HPCs biology. Here, we characterize the TGF-β-triggered epithelial–mesenchymal transition (EMT) response in oval cells, its effects on cell fate in vivo, and the regulatory effect of the HGF/c-Met signaling. Our data show that chronic treatment with TGF-β triggers a partial EMT in oval cells based on coexpression of epithelial and mesenchymal markers. The phenotypic and functional profiling indicates that TGF-β-induced EMT is not associated with stemness but rather represents a step forward along hepatic lineage. This phenotypic transition confers advantageous traits to HPCs including survival, migratory/invasive and metabolic benefit, overall enhancing the regenerative potential of oval cells upon transplantation into a carbon tetrachloride-damaged liver. We further uncover a key contribution of the HGF/c-Met pathway to modulate the TGF-β-mediated EMT response. It allows oval cells expansion after EMT by controlling oxidative stress and apoptosis, likely via Twist regulation, and it counterbalances EMT by maintaining epithelial properties. Our work provides evidence that a coordinated and balanced action of TGF-β and HGF are critical for achievement of the optimal regenerative potential of HPCs, opening new therapeutic perspectives.
  • Item
    Lack of EGFR catalytic activity in hepatocytes improves liver regeneration following DDC‐induced cholestatic injury by promoting a pro‐restorative inflammatory response
    (Journal of Pathology, 2022) Lazcanoiturburu, Nerea; García‐Sáez, Juan; González‐Corralejo, Carlos; Roncero Romero, Cesáreo; Sanz Ortega, Julián; Martín‐Rodríguez, Carlos; Valdecantos, M Pilar; Martínez‐Palacián, Adoración; Almale Del Barrio, Laura; Bragado Domingo, Paloma; Calero‐Pérez, Silvia; Fernández, Almudena; García‐Bravo, María; Guerra, Carmen; Montoliu, Lluis; Segovia, José Carlos; Martínez Valverde, Ángela María; Fabregat Romero, María Isabel; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu
    Despite the well‐known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin‐positive cells were submitted to liver damage induced by 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1–2 days of a DDC‐supplemented diet, followed by a signaling switch‐off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2‐MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro‐restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19‐positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte‐specific EGFR activity acts as a key player in the crosstalk between parenchymal and non‐parenchymal hepatic cells, promoting the pro‐inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.