Person:
Bragado Domingo, Paloma

Loading...
Profile Picture
First Name
Paloma
Last Name
Bragado Domingo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 15
  • Item
    Breast Mammographic Density: Stromal Implications on Breast Cancer Detection and Therapy
    (Journal of Clinical Medicine, 2020) Fernández-Nogueira, Patricia; Mancino, Mario; Fuster, Gemma; Bragado Domingo, Paloma; Prats de Puig, Miquel; Gascón, Pere; Casado, Francisco Javier; Carbó, Neus
    Current evidences state clear that both normal development of breast tissue as well as its malignant progression need many-sided local and systemic communications between epithelial cells and stromal components. During development, the stroma, through remarkably regulated contextual signals, affects the fate of the different mammary cells regarding their specification and differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic growth of the breast carcinoma. Mammographic density has been described as a risk factor in the development of breast cancer and is ascribed to modifications in the composition of breast tissue, including both stromal and glandular compartments. Thus, stroma composition can dramatically affect the progression of breast cancer but also its early detection since it is mainly responsible for the differences in mammographic density among individuals. This review highlights both the pathological and biological evidences for a pivotal role of the breast stroma in mammographic density, with particular emphasis on dense and malignant stromas, their clinical meaning and potential therapeutic implications for breast cancer patients.
  • Item
    The New Antitumor Drug ABTL0812 Inhibits the Akt/mTORC1 Axis by Upregulating Tribbles-3 Pseudokinase
    (Clinical Cancer Research, 2016) Bragado Domingo, Paloma; Lorente Pérez, María Del Mar; Salazar Roa, María; Velasco Díez, Guillermo; Tatiana Erazo; Anna Lopez-Plana; Pau Munoz-Guardiola; Patricia Fernandez-Nogueira; Jose A. García-Martínez; Gemma Fuster; Jordi Espadaler; Javier Hernandez-Losa; Jose Ramon Bayascas; Marc Cortal; Laura Vidal; Pedro Gascon; Mariana Gomez-Ferreria; Jose Alfon; Carles Domenech; Jose M. Lizcano; Jose M. Lizcano
    Purpose: ABTL0812 is a novel first-in-class, small molecule which showed antiproliferative effect on tumor cells in phenotypic assays. Here we describe the mechanism of action of this antitumor drug, which is currently in clinical development. Experimental Design: We investigated the effect of ABTL0812 on cancer cell death, proliferation, and modulation of intracellular signaling pathways, using human lung (A549) and pancreatic (MiaPaCa-2) cancer cells and tumor xenografts. To identify cellular targets, we performed in silico high-throughput screening comparing ABTL0812 chemical structure against ChEMBL15 database. Results: ABTL0812 inhibited Akt/mTORC1 axis, resulting in impaired cancer cell proliferation and autophagy-mediated cell death. In silico screening led us to identify PPARs, PPARα and PPARγ as the cellular targets of ABTL0812. We showed that ABTL0812 activates both PPAR receptors, resulting in upregulation of Tribbles-3 pseudokinase (TRIB3) gene expression. Upregulated TRIB3 binds cellular Akt, preventing its activation by upstream kinases, resulting in Akt inhibition and suppression of the Akt/mTORC1 axis. Pharmacologic inhibition of PPARα/γ or TRIB3 silencing prevented ABTL0812-induced cell death. ABTL0812 treatment induced Akt inhibition in cancer cells, tumor xenografts, and peripheral blood mononuclear cells from patients enrolled in phase I/Ib first-in-human clinical trial. Conclusions: ABTL0812 has a unique and novel mechanism of action, that defines a new and drugable cellular route that links PPARs to Akt/mTORC1 axis, where TRIB3 pseudokinase plays a central role. Activation of this route (PPARα/γ-TRIB3-Akt-mTORC1) leads to autophagy-mediated cancer cell death. Given the low toxicity and high tolerability of ABTL0812, our results support further development of ABTL0812 as a promising anticancer therapy.
  • Item
    p38α Mediates Cell Survival in Response to Oxidative Stress via Induction of Antioxidant Genes
    (Journal of Biological Chemistry, 2012) Gutiérrez Uzquiza, Álvaro; Arechederra, María; Bragado Domingo, Paloma; Aguirre-Ghiso, Julio A.; Porras Gallo, María Almudena
    We reveal a novel pro-survival role for mammalian p38α in response to H(2)O(2), which involves an up-regulation of antioxidant defenses. The presence of p38α increases basal and H(2)O(2)-induced expression of the antioxidant enzymes: superoxide-dismutase 1 (SOD-1), SOD-2, and catalase through different mechanisms, which protects from reactive oxygen species (ROS) accumulation and prevents cell death. p38α was found to regulate (i) H(2)O(2)-induced SOD-2 expression through a direct regulation of transcription mediated by activating transcription factor 2 (ATF-2) and (ii) H(2)O(2)-induced catalase expression through regulation of protein stability and mRNA expression and/or stabilization. As a consequence, SOD and catalase activities are higher in WT MEFs. We also found that this p38α-dependent antioxidant response allows WT cells to maintain an efficient activation of the mTOR/p70S6K pathway. Accordingly, the loss of p38α leads to ROS accumulation in response to H(2)O(2), which causes cell death and inactivation of mTOR/p70S6K signaling. This can be rescued by either p38α re-expression or treatment with the antioxidants, N-acetyl cysteine, or exogenously added catalase. Therefore, our results reveal a novel homeostatic role for p38α in response to oxidative stress, where ROS removal is favored by antioxidant enzymes up-regulation, allowing cell survival and mTOR/p70S6K activation.
  • Item
    New and Old Key Players in Liver Cancer
    (International Journal of Molecular Sciences, 2023) Cuesta Martínez, Ángel; Palao, Nerea; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu; Porras Gallo, María Almudena
    Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
  • Item
    Met signaling in cardiomyocytes is required for normal cardiac function in adult mice
    (Biochimica et Biophysica Acta (Molecular Basis of disease), 2013) Arechederra Calderón, María; Carmona Mejías, Rita; González-Nuñez, María; Gutiérrez Uzquiza, Álvaro; Bragado Domingo, Paloma; Cruz-González, Ignacio; Cano Rincón, Elena; Guerrero Arroyo, María Del Carmen; Sánchez Muñoz, Aranzazu; López-Novoa, José Miguel; Schneider, Michael D.; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras Gallo, María Almudena
    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.
  • Item
    Inhibition of RAC1 activity in cancer associated fibroblasts favours breast tumour development through IL-1β upregulation
    (Cancer Letters, 2021) Martínez López, Angélica; García Casas, Ana; Bragado Domingo, Paloma; Orimo, Akira; Castañeda-Saucedo, Eduardo; Castillo Lluva, Sonia
    Cancer-associated fibroblasts (CAFs) are highly abundant stromal components in the tumour microenvironment. These cells contribute to tumorigenesis and indeed, they have been proposed as a target for anti-cancer therapies. Similarly, targeting the Rho-GTPase RAC1 has also been suggested as a potential therapeutic target in cancer. Here, we show that targeting RAC1 activity, either pharmacologically or by genetic silencing, increases the pro-tumorigenic activity of CAFs by upregulating IL-1β secretion. Moreover, inhibiting RAC1 activity shifts the CAF subtype to a more aggressive phenotype. Thus, as RAC1 suppresses the secretion of IL-1β by CAFs, reducing RAC1 activity in combination with the depletion of this cytokine should be considered as an interesting therapeutic option for breast cancer in which tumour cells retain intact IL-1β signalling..
  • Item
    New and Old Key Players in Liver Cancer
    (International Journal of Molecular Sciences, 2023) Cuesta Martínez, Ángel; Palao, Nerea; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu; Porras Gallo, María Almudena; Arechederra, Maria; Tarantino, Giovanni; Berasain, Carmen
    Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
  • Item
    c-Met Signaling Is Essential for Mouse Adult Liver Progenitor Cells Expansion After Transforming Growth Factor-β-Induced Epithelial–Mesenchymal Transition and Regulates Cell Phenotypic Switch
    (Stem Cells, 2019) Almale Del Barrio, Laura; García-Álvaro, María; Martínez-Palacián, Adoración; García-Bravo, María; Lazcanoiturburu, Nerea; Addante, Annalisa; Roncero Romero, Cesáreo; Sanz Ortega, Julián; López, María de la O; Bragado Domingo, Paloma; Mikulits, Wolfgang; Factor, Valentina M.; Thorgeirsson, Snorri S.; Ignacio, Casal, J.; Segovia, José-Carlos; Rial, Eduardo; Fabregat Romero, María Isabel; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu
    Adult hepatic progenitor cells (HPCs)/oval cells are bipotential progenitors that participate in liver repair responses upon chronic injury. Recent findings highlight HPCs plasticity and importance of the HPCs niche signals to determine their fate during the regenerative process, favoring either fibrogenesis or damage resolution. Transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) are among the key signals involved in liver regeneration and as component of HPCs niche regulates HPCs biology. Here, we characterize the TGF-β-triggered epithelial–mesenchymal transition (EMT) response in oval cells, its effects on cell fate in vivo, and the regulatory effect of the HGF/c-Met signaling. Our data show that chronic treatment with TGF-β triggers a partial EMT in oval cells based on coexpression of epithelial and mesenchymal markers. The phenotypic and functional profiling indicates that TGF-β-induced EMT is not associated with stemness but rather represents a step forward along hepatic lineage. This phenotypic transition confers advantageous traits to HPCs including survival, migratory/invasive and metabolic benefit, overall enhancing the regenerative potential of oval cells upon transplantation into a carbon tetrachloride-damaged liver. We further uncover a key contribution of the HGF/c-Met pathway to modulate the TGF-β-mediated EMT response. It allows oval cells expansion after EMT by controlling oxidative stress and apoptosis, likely via Twist regulation, and it counterbalances EMT by maintaining epithelial properties. Our work provides evidence that a coordinated and balanced action of TGF-β and HGF are critical for achievement of the optimal regenerative potential of HPCs, opening new therapeutic perspectives.
  • Item
    CRISPR/Cas9 screenings unearth protein arginine methyltransferase 7 as a novel essential gene in prostate cancer metastasis
    (Cancer Letters, 2024) Rodrigo Faus, María; Vincelle-Nieto, África; Vidal, Natalia; Puente, Javier; Saiz-Pardo Sanz, Melchor; López-García, Alejandra; Mendiburu-Eliçabe Garganta, Marina; Palao, Nerea; Baquero, Cristina; Linzoain-Agos, Paula; Cuesta Martínez, Ángel; Qu, Hui Qi; Hakonarson, Hakon; Musteanu, Mónica Andrea; Reyes Palomares, Armando Adolfo; Porras Gallo, María Almudena; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro
    Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.
  • Item
    Lack of EGFR catalytic activity in hepatocytes improves liver regeneration following DDC‐induced cholestatic injury by promoting a pro‐restorative inflammatory response
    (Journal of Pathology, 2022) Lazcanoiturburu, Nerea; García‐Sáez, Juan; González‐Corralejo, Carlos; Roncero Romero, Cesáreo; Sanz Ortega, Julián; Martín‐Rodríguez, Carlos; Valdecantos, M Pilar; Martínez‐Palacián, Adoración; Almale Del Barrio, Laura; Bragado Domingo, Paloma; Calero‐Pérez, Silvia; Fernández, Almudena; García‐Bravo, María; Guerra, Carmen; Montoliu, Lluis; Segovia, José Carlos; Martínez Valverde, Ángela María; Fabregat Romero, María Isabel; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu
    Despite the well‐known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin‐positive cells were submitted to liver damage induced by 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1–2 days of a DDC‐supplemented diet, followed by a signaling switch‐off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2‐MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro‐restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19‐positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte‐specific EGFR activity acts as a key player in the crosstalk between parenchymal and non‐parenchymal hepatic cells, promoting the pro‐inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.