Person:
Martín Gómez, Verónica

Loading...
Profile Picture
First Name
Verónica
Last Name
Martín Gómez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Department
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Project number: 151
    Meteolab como herramienta educativa de Meteorología en el Aula
    (2021) Rodriguez Fonseca, María Belén; Ábalos Álvarez, Marta; Alvarez Solas, Jorge; Ayarzagüena Porras, Blanca; Benito Barca, Samuel; Calvo Fernández, Natalia; de la Cámara Illescas, Alvaro; Durán Montejano, Luis; García Herrena, Ricardo; Garrido Pérez, José Manuel; Gómara Cardalliaguet, Iñigo; Losada Doval, Teresa; Mohino Harris, Elsa; Montoya Redondo, Marisa Luisa; Ordoñez García, Carlos; Polo Sánchez, Irene; Robinson, Alexander James; Sastre Marugán, Mariano; Serrano Mendoza, Encarnación; Yagüe Anguis, Carlos; Zurita Gotor, Pablo; García Burgos, Marina; González Alemán, Juan Jesús; González Barras, Rosa María; González Rouco, Jesús Fidel; Martín Gómez, Verónica; Maqueda Burgos, Gregorio
    El Presente proyecto es una continuación de proyectos anteriores dentro de la plataforma de divulgación Meteolab. Meteolab es un proyecto de divulgación de Meteorología y Clima que tiene su origen en 2002, cuando se comenzaron a diseñar experimentos de bajo coste con materiales caseros para la Semana de la Ciencia de la Comunidad de Madrid (CAM). Con los años, se generó un conocimiento que se materializó en 2010 con la concesión de un Proyecto de Innovación Educativa (PIE) financiado por la Universidad Complutense de Madrid (UCM), dirigido por Belén Rodríguez de Fonseca. Gracias a este primer proyecto en el que trabajaron muchos profesores y alumnos de ciencias de la atmósfera, se gestó un portal web (meteolab.fis.ucm.es) en el que los experimentos se explicaban y se grababan para impulsar su difusión. Más adelante, en un segundo proyecto de Innovación Educativa, dirigido por la profesora Maria Luisa Montoya, los contenidos fueron traducidos al inglés. En concreto, los experimentos que componen Meteolab tienen como principal objetivo entender los principios y variables que determinan el comportamiento de las masas de aire en la atmósfera y de agua en el océano. La idea consiste en visualizar con experimentos sencillos las leyes físicas que gobiernan la atmósfera y el océano: movimientos horizontales y verticales, cambios de estado, mezcla y equilibrio, así como la interacción entre componentes. Se persigue observar los procesos meteorológicos familiares, como son la formación de una nube, los tornados, la convección, la formación de borrascas o la lluvia, entendiendo los procesos físicos que los producen. Finalmente, Meteolab permite también visualizar fenómenos climáticos como el efecto invernadero, el fenómeno de El Niño, el deshielo del Ártico, la influencia de los volcanes en el clima o la subida del nivel del mar. Existe un catálogo de experimentos, la mayoría de los cuales pueden consultarse a través del portal meteolab.fis.ucm.es, encontrándose todos ellos físicamente localizados en el Laboratorio Elvira Zurita de la Facultad de Ciencias Físicas. Tras la experiencia acumulada durante los 18 años de existencia de Meteolab, en los que se han adecuado las explicaciones de los experimentos a distintos niveles de dificultad (infantil, primaria, secundaria, bachillerato y Universidad de mayores), se ha sugerido la idoneidad de adaptar los contenidos a los estudiantes del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Así, por ejemplo, cuando se explica la formación de una nube, se puede ir complicando el discurso dependiendo de los diferentes ciclos de la enseñanza. De esta manera, para un nivel de escuela primaria uno sólo tiene que explicar que el aire se enfría al ascender, y al enfriarse se forman gotas de agua que forman las nubes. Al llegar a secundaria, los estudiantes aprenden el concepto de presión atmosférica y la relación entre la temperatura, la presión y el volumen de una parcela de aire. Más adelante, en el Grado en Física, se estudia la tensión de vapor, la expansión adiabática y la existencia de núcleos de condensación. Finalmente, en el Máster en Meteorología se aprenden los distintos procesos de nucleación y tipos de nubes. Todos estos conceptos van complicando la explicación, por lo que un mismo experimento puede explicarse tanto en una escuela infantil como en una Universidad. Es por ello, que, aprovechando la plataforma de divulgación Meteolab, hemos decidido dar un paso adelante y adaptar y ampliar los contenidos de Meteolab, para así poder integrarlos en los currícula del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Con todo ello, los objetivos del presente proyecto han sido: -Implementar los experimentos de Meteolab en el Aula, tanto en las asignaturas de Grado como en las de Máster. -Adaptar los contenidos existentes del portal web Meteolab (meteolab.fis.ucm.es) a las asignaturas relacionadas con Meteorología del Grado en Física y del Máster en Meteorología y Geofísica, con el fin de visualizar procesos físicos que se explican en el aula. -Añadir a Meteolab nuevos contenidos en relación con la dinámica de la atmósfera y el cambio climático. -Evaluar la mejora de la comprensión por parte del alumnado de los procesos que tienen lugar principalmente en la atmósfera y el océano, y su relación con el clima y su variabilidad.
  • Item
    Southern hemisphere sensitivity to ENSO patterns and intensities: impacts over subtropical South America
    (Atmosphere, 2020) Martín Gómez, Verónica; Barreiro, Marcelo; Mohino Harris, Elsa
    El Niño flavors influence Subtropical South American (SSA) rainfall through the generation of one or two quasi-stationary Rossby waves. However, it is not yet clear whether the induced wave trains depend on the El Niño pattern and/or its intensity. To investigate this, we performed different sensitivity experiments using an Atmospheric General Circulation Model (AGCM) which was forced considering separately the Canonical and the El Niño Modoki patterns with sea surface temperature (SST) maximum anomalies of 1 and 3 ◦C. Experiments with 3 ◦C show that the Canonical El Niño induces two Rossby wave trains, a large one emanating from the western subtropical Pacific and a shorter one initiated over the central-eastern subtropical South Pacific. Only the shorter wave plays a role in generating negative outgoing longwave radiation (OLR) anomalies over SSA. On the other hand, 3 ◦C El Niño Modoki experiments show the generation of a large Rossby wave train that emanates from the subtropical western south Pacific and reaches South America (SA), promoting the development of negative OLR anomalies over SSA. Experiments with 1 ◦C show no impacts on OLR anomalies over SSA associated with El Niño Modoki. However, for the Canonical El Niño case there is a statistically significant reduction of the OLR anomalies over SSA related to the intensification of the upper level jet stream over the region. Finally, our model results suggest that SSA is more sensitive to the Canonical El Niño, although this result may be model dependent.
  • Item
    Project number: 266
    Creación de recursos prácticos y digitales de meteorología y clima a través de Metolab
    (2023) Losada Doval, Teresa; Ayarzaüena Porras, Blanca; Benito Barca, Samuel; Calvo Fernández, Natalia; Calvo Miguélez, Elena; Cámara Illescas, Álvaro de la; Durán Montejano, Luis; García Burgos, Marina; García Herrera, Ricardo Francisco; Garrido Pérez, José Manuel; Gómara Cardalliaguet, Íñigo; López Reyes, Mauricio; Martín del Rey, Marta; Martín Gómez, Verónica; Martínez Andradas, Verónica; Mohino Harris, Elsa; Ortiz Corral, Pablo; Polo Sánchez, Irene; Rodríguez de Fonseca, María Belén; Román Cascón, Carlos; Sastre Marugán, Mariano; Yagüe Anguís, Carlos; Zurita Gotor, Pablo; Calvo Miguélez, Elena
  • Item
    Understanding rainfall prediction skill over the Sahel in NMME seasonal forecast
    (Climate dynamics, 2022) Martín Gómez, Verónica; Mohino Harris, Elsa; Rodríguez Fonseca, Belén; Sánchez Gómez, Emilia
    Sahelian rainfall presents large interannual variability which is partly controlled by the sea surface temperature anomalies (SSTa) over the eastern Mediterranean, equatorial Pacifc and Atlantic oceans, making seasonal prediction of rainfall changes in Sahel potentially possible. However, it is not clear whether seasonal forecast models present skill to predict the Sahelian rainfall anomalies. Here, we consider the set of models from the North American Multi-model ensemble (NMME) and analyze their skill in predicting the Sahelian precipitation and address the sources of this skill. Results show that though the skill in predicting the Sahelian rainfall is generally low, it can be mostly explained by a combination of how well models predict the SSTa in the Mediterranean and in the equatorial Pacifc regions, and how well they simulate the teleconnections of these SSTa with Sahelian rainfall. Our results suggest that Sahelian rainfall skill is improved for those models in which the Pacifc SST—Sahel rainfall teleconnection is correctly simulated. On the other hand, models present a good ability to reproduce the sign of the Mediterranean SSTa—Sahel teleconnection, albeit with underestimated amplitude due to an underestimation of the variance of the SSTa over this oceanic region. However, they fail to correctly predict the SSTa over this basin, which is the main reason for the poor Sahel rainfall skill in models. Therefore, results suggest models need to improve their ability to reproduce the variability of the SSTa over the Mediterranean as well as the teleconnections of Sahelian rainfall with Pacifc and Mediterranean SSTa.
  • Item
    Southern hemisphere circulation anomalies and impacts over subtropical South America due to different El Niño flavours
    (International journal of climatology, 2020) Martín Gómez, Verónica; Barreiro, Marcelo; Losada Doval, Teresa; Rodríguez Fonseca, María Belén
    ENSO exhibits different flavors with worldwide impacts. However, the associated teleconnections with subtropical South America (SSA) are still controversial and modelling studies are needed. Here, we analyze the Southern Hemisphere (SH) circulation anomalies and the impacts over SSA during the austral summer due to different El Niño patterns (Canonical and El Niño Modoki). The analysis is performed considering reanalysis data and two different Atmospheric General Circulation Models (SPEEDY and UCLA - AGCM). Results from reanalysis show that positive precipitation anomalies develop over SSA during Canonical El Niño events. These anomalies are induced through an increase of upper level cyclonic vorticity advection and a stronger low-level southward moisture transport. However, in El Niño Modoki events, rainfall anomalies are observed over SSA only for the strongest events. Both models are able to reproduce the precipitation signal over SSA in the Canonical El Niño case, although the underlying physical mechanism depends on the model. In SPEEDY, the increased rainfall is due to an increase of the moisture transport toward SSA, while in UCLA - AGCM it is related to both, an increase of the low-level moisture transport toward SSA and the increase of upper level cyclonic vorticity advection. The precipitation signal associated with El Niño Modoki is more controversial. While UCLA - AGCM suggests a rainfall increase over SSA, SPEEDY, in agreement with observations, does not show any statistically significant signal. However, the upper level circulation anomalies reproduced by UCLA – AGCM are more consistent with reanalysis than those from SPEEDY, which makes UCLA – AGCM to be more reliable. This result suggests increased rainfall over SSA during El Niño Modoki.