Person:
García Martín, Alberto

Loading...
Profile Picture
First Name
Alberto
Last Name
García Martín
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Identifiers
UCM identifierScopus Author ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Kinetically controlled acylation of 6-APA catalyzed by penicillin acylase from Streptomyces lavendulae: effect of reaction conditions in the enzymatic synthesis of penicillin V
    (Biocatalysis and Biotransformation, 2019) Hormigo, Daniel; López Conejo, María Teresa; Serrano Aguirre, Lara; García Martín, Alberto; Saborido Modia, Ana; De La Mata Riesco, Mª Isabel; Arroyo Sánchez, Miguel
    Enzymatic synthesis of penicillin V (penV) by acylation of 6-aminopenicillanic acid (6-APA) was carried out using methyl phenoxyacetate (MPOA) as activated acyl donor and soluble penicillin acylase from Streptomyces lavendulae (SlPVA) as biocatalyst. The effect of different reaction conditions on penV synthesis was investigated, such as enzyme concentration, pH, molar ratio of 6-APA to MPOA, as well as presence of DMSO as water-miscible co-solvent at different concentrations. Time-course profiles of all reactions followed the typical pattern of kinetically controlled synthesis (KCS) of β-lactam antibiotics: penV concentration reached a maximum (highest yield or Ymax) and then decreased gradually. Such maximum was higher at pH 7.0, observing that final penV concentration was abruptly reduced when basic pH values were employed in the reaction. Under the selected conditions (100 mM Tris/HCl buffer pH 7.0, 30 °C, 2.7% (v/v) DMSO, 20 mM MPOA, 0.3 UI/ml of SlPVA), Ymax was enhanced by increasing the substrate molar ratio (6-APA to MPOA) up to 5, reaching a maximum of 94.5% and a S/H value of 16.4 (ratio of synthetic activity to hydrolytic activity). As a consequence, the use of an excess of 6-APA as nucleophile has allowed us to obtain some of the highest Ymax and S/H values among those reported in literature for KCS of β-lactam antibiotics. Although many penicillin G acylases (PGAs) have been described in kinetically controlled acylations, SlPVA should be considered as a different enzyme in the biocatalytic tool-box for novel potential synthetic processes, mainly due to its different substrate specificity compared to PGAs.
  • Item
    Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics
    (BBA - Biochimica et Biophysica Acta, 2019) Urbanek, Aneta K.; Mirończuk, Aleksandra M.; García Martín, Alberto; Saborido Modia, Ana; De La Mata Riesco, Mª Isabel; Arroyo Sánchez, Miguel
    Application of polyester-degrading enzymes should be considered as an eco-friendly alternative to chemical recycling due to the huge plastic waste disposal nowadays. Many hydrolases from several fungi and bacteria have been discovered and successfully evaluated for their activity towards different aliphatic polyesters (PHA, PBS, PBSA, PCL, PLA), aromatic polyesters (PET, PBT, PMT) as well as their co-polyesters (PBST, PBAT, PBSTIL). This revision gives an up-to-date overview on the main biochemical features and biotechnological applications of those reported enzymes which are able to degrade polyester-based plastics, including different microbial polyester depolymerases, esterases, cutinase-like enzymes and lipases. Summarized information includes available protein sequences with the corresponding accession numbers deposited in NCBI server, 3D resolved structures, and data about optimal conditions for enzymatic activity and stability of many of these microbial enzymes that would be helpful for researchers in this topic. Although screening and identification of new native polyester hydrolases from microbial sources is undeniable according to literature, we briefly highlight the importance of the design of improved enzymes towards recalcitrant aromatic polyesters through different approaches that include site-directed mutagenesis and surface protein engineering.