Person:
Balea Martín, Ana

Loading...
Profile Picture
First Name
Ana
Last Name
Balea Martín
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Ingeniería Química
Identifiers
UCM identifierDialnet ID

Search Results

Now showing 1 - 10 of 11
  • Item
    Cellulose nanofibers and chitosan to remove flexographic inks from wastewaters
    (Water research and technology, 2019) Balea Martín, Ana; Monte Lara, María Concepción; Fuente González, Elena De La; Negro Álvarez, Carlos Manuel; Sánchez Salvador, José Luis; Blanco Suárez, María Ángeles
    Flexographic printing technology is an economical, productive, low maintenance and versatile technology. However, the removal of these inks by the traditional flotation process during paper recycling is not possible since they remain dissolved in the waters, making necessary the development of alternative methods. Recent studies have revealed the potential use of nanocellulose (NC) combined with a cationic polyacrylamide to remove flexographic inks from wastewater. The use of a natural polymer, such as chitosan, would be an important improvement of this treatment because NC and chitosan are the two most abundant natural polymers with interesting properties, such as non-toxicity and biodegradability. Therefore, in this study the decolorization of three flexographic inks (copper phthalocyanine blue, carbon black and diarylide yellow) by the sequential addition of cellulose nanofibers, produced from recycled paper, and chitosan has been evaluated. Results show that this eco-friendly approach has high potential for the removal of water-based inks with an almost 100% reduction of turbidity and ink from the wastewater. Moreover, the final sludge containing nanocellulose and inks could be used to reinforce the pulp of the middle layers of carton board, improving the mechanical properties of the product and reducing waste generation.
  • Item
    Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper
    (Cellulose, 2018) Campano, Cristina ; Merayo, Noemí ; Balea Martín, Ana; Tarrés, Quim ; Delgado-Aguilar, Marc ; Mutjé, Pere; Negro Álvarez, Carlos Manuel; Blanco Suárez, María Ángeles
    The use of nanocelluloses as strength-enhancing additives in papermaking is widely known since both cellulose nanofibers (CNF) and nanocrystals (CNC) present similar composition than paper but their exceptional properties in the nanometer scale confers a paper quality enhancement. However, some agglomeration problems in CNF and CNC through hydrogen bonding cause a lower improvement of mechanical properties of paper. Therefore, a better dispersion of both nanocelluloses can maximize their effect on paper properties, thus reducing the needed dose to get the same increment in tensile strength and then reducing material costs. To ease the implementation of these nanocelluloses in the production process of recycled paper, typically used operations of these industries have been used. Among them, those devoted to improve the homogeneous mixture of nanocellulose in the pulp suspension have been assessed. Firstly, pulping conditions were studied, including pulping time, temperature and need for soaking as variables. Secondly, some dispersing agents used in papermaking were considered, studying the effect of different types and doses. The highest tensile strength of paper was achieved by applying long pulping times (60 min), getting increments up to 30% with the use of soaking and polyacrylamide as retention system. However, with the use of a low dose of a dispersing agent (0.003%), tensile index can be still increased up to 20.6% avoiding these long times. This study can be of great interest of those researchers trying to implement the use of nanocelluloses as strength additive in papermaking.
  • Item
    Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties
    (Bioresources, 2016) Balea Martín, Ana; Fuente González, Elena De La; Merayo, Noemí ; Delgado-Aguilar, Marc; Mutje, Pere; Blanco Suárez, María Ángeles; Negro Álvarez, Carlos Manuel
    Corn stalk, an agricultural waste, was valorized by the production of cellulose nanofibers (CNF), which were tested for improving recycled paper properties. CNF from eucalyptus kraft pulp (E-CNF) was used as a reference. Addition of 0.5% wt. CNF produced from corn organosolv pulp (C-CNF) to recycled paper increased the tensile index by 20%, whereas the same improvement with E-CNF was achieved at 1.5% wt. Tensile index was further enhanced by increasing the E-CNF, whereas C-CNF achieved its maximum effect at this dose. Different recycled furnish compositions were studied to evaluate C-CNF as a product additive. C-CNF improved tensile strength in all the different recycled furnishes studied. The tensile index improvement caused by C-CNF did not depend on the proportions of old newspaper and old magazine paper used. Addition of C-CNF to recycled corrugated board fluting increased the tensile strength, but to a slightly lower extent than in the case of recycled newsprint paper.
  • Item
    Combined effect of sodium carboxymethyl cellulose, cellulose nanofibers and drainage aids in recycled paper production process
    (Carbohydrate Polymers, 2018) Tarrés, Quim; Oliver-Ortega, Helena; Alcalà, Manel; Merayo, Noemí ; Balea Martín, Ana; Blanco Suárez, María Ángeles; Mutjé, Pere; Delgado-Aguilar, Marc
    The present work shows the suitability of using recovered cardboard boxes for the development of high-performance papers through the use of cellulose nanofibers (CNF) and sodium carboxymethyl cellulose (CMC-Na). CNF were prepared by enzymatic hydrolysis using bleached kraft hardwood pulp, while a commercial grade of CMC-Na was used. Both were added in bulk together with polyethylenimine (PEI) as wet-end additive to improve pulp drainability. The combination of 3 wt% CNF and 7.5 wt% CMC-Na double the breaking length of paper. In addition, the use of 0.4 wt% of PEI significantly decreased the Schopper-Riegler degree, while mechanical properties remained almost at the same level. It was found that it is possible to recover and even increase the properties of recycled papers, with the added advantage that no structural damages were caused on the fibres, increasing the life span and recyclability of paper products.
  • Item
    Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives
    (Industrial Crops and Products, 2017) Balea Martín, Ana; Merayo, Noemi; Fuente González, Elena De La; Negro Álvarez, Carlos Manuel; Blanco Suárez, María Ángeles
    Agro-wastes valorization focusses on production of high value-added products, such as cellulose nanofibers (CNF), and contributes to reduce the environmental impact of these residues. CNF have been used successfully as papermaking additives and some previsions maintain that this sector will become the most important, demanding CNF at a reasonable cost. Furthermore, the optimization of the production process of CNF from agricultural residues would contribute to the goals of a circular economy, the development of rural areas and the costs reduction by producing CNF of the minimum quality fit-for-use in recycled paper. In this study, CNF was produced from two agricultural residues; corn (C-CNF) and rape (R-CNF) stalk pulps, pretreated with bleaching, refining and TEMPO-mediated oxidation. Coagulant and cationic polyacrylamide (dual system) and chitosan were the retention systems. Results show the difficulty of predicting the effect of CNF based on their properties, as fibrillation degree or anionic charge, on the improvement of mechanical properties of recycled paper. That is proved by the low differences in tensile index (TI) improvement (similar to 15% by adding 0.5% C-CNF combined with dual system), obtained with CNF with very different properties. The expensive TEMPO pretreatment could be avoid by applying bleaching pretreatment to the corn pulp, increasing the TI up to 15% without affecting drainage and decoupling the simultaneous deterioration of drainage with TI improvement (drainage time decreased nearly 50% and 20% adding bleached R-CNF and C-CNF, respectively, combined with chitosan). Similar improvements on TI can be achieved by replacing the dual retention system by chitosan without addition of CNF, but the combination of CNF and chitosan allows achieving the highest TI values.
  • Item
    Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper
    (Cellulose, 2018) Balea Martín, Ana; Merayo, Noemí ; Fuente González, Elena De La; Negro Álvarez, Carlos Manuel; Delgado-Aguilar, Marc; Mutje, Pere; Blanco Suárez, María Ángeles
    The production of high filler-loaded recycled papers is often affected by high values of linting and low values of strength. In the first case, the accumulation of lint particles from paper's surface on the printing blanket affects the quality of the printed paper and the pressroom's productivity. In the second case, increasing the use of fillers and recycling cycles lead to poor paper strength. Cellulose nanofibers (CNFs) are receiving a great deal of attention due to their potential as a reinforcement aid for high filler-loaded papers through filler-fiber interaction and interfiber bonding. It is already proven that high quality CNFs can reduce linting, although their industrial application is limited by their high production cost. The objective of this research is, therefore, to quantify the effect of applying lower grade, more sustainable CNFs on linting phenomena and on the mechanical properties of recycled papers. Eucalyptus, pine and triticale residues were used as cellulose sources, and the CNFs were produced minimizing the chemical pretreatment before homogenization. Addition of 3 wt% of CNFs from pine residues into the recycled paper with 15.7 wt% of total filler reduced linting by 40% and increased tensile strength by 15.1%; further improvements on linting and mechanical properties were achieved at 5 wt%. Moreover, the increase in drainage time can be overcome by the addition of a retention aid, in this case a coagulant-cationic polyacrylamide-bentonite system, commonly used in paper mills.
  • Item
    Nanocellulose characterization challenges
    (Bioresources, 2021) Balea Martín, Ana; Blanco Suárez, María Ángeles; Delgado-Aguilar, Marc; Monte Lara, María Concepción; Tarrés, Quim; Fuente González, Elena De La; Mutjé, Per; Negro Álvarez, Carlos Manuel
    Despite the extraordinary properties of nanocellulose (NC), as confirmed through two decades of exhaustive research, addressing an array of potential applications, the NC market is still far from reaching its full potential. Among the main causes is the lack of process-adapted measuring tools capable of characterizing NC, at acceptable speed and reliability, to meet the industrial demands in a cost-effective way. Therefore, reliable characterization methodologies of NC and new standards are of paramount importance in ensuring reproducible research results and quality control specifications for present and future NC products and applications. Furthermore, the successful industrial use of NC products depends on critical parameters that are still being identified and studied. This review paper aims to identify some of the current drawbacks and limitations in NC characterization that hinder their commercial deployment. Moreover, important challenges related to characterization and new opportunities for future research in this field are addressed.
  • Item
    Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard
    (Bioresources, 2016) Balea Martín, Ana; Blanco Suárez, María Ángeles; Monte Lara, María Concepción; Merayo, Noemi; Negro Álvarez, Carlos Manuel
    Extending the limits of paper recycling by increasing the number of recycling cycles results in decreased mechanical properties due to the irreversible hornification of cellulose fibers. This process alters the fiber structure and properties because of the repeated chemical and mechanical treatments that occur during wetting and drying. As a result, poor tensile strength is the main source of customer complaints to paper manufacturers. Cellulose nanofibers (CNF) from bleached eucalyptus and pine pulps were investigated as potential strength additives because of their proven contribution to interfiber bonding. These results were compared to the results obtained using different families of strength additives. The effects on the mechanical properties of recycled old corrugated containers were studied by measuring bursting, tensile, and short span compressive strength. Cellulose nanofibers and cationic polyacrylamide (cPAM) improved the mechanical strength properties when they were added at doses around 4 wt.%. A combination of CNF and cPAM was also tested. The effects of the combined additives were not as high as expected compared to the results achieved individually. The CNF from pine pulp resulted in the highest increase in bursting index when combined with cPAM, achieving an increase of over 93%. The combination of CNF from eucalyptus pulp and cPAM increased the bursting index over 60%.
  • Item
    Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters
    (Environmental Science and Pollution Research, 2017) Balea Martín, Ana; Monte Lara, María Concepción; Fuente González, Elena De La; Negro Álvarez, Carlos Manuel; Blanco Suárez, María Ángeles
    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing waterbased inks.
  • Item
    Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process
    (Cellulose, 2017) Merayo, Noemi; Balea Martín, Ana; Fuente González, Elena De La; Blanco Suárez, María Ángeles; Negro Álvarez, Carlos Manuel
    Cellulose nanofibers (CNF) have increasing relevance in different applications, for instance, in the paper industry as a sustainable strength additive. This application is especially beneficial for recycled paper, which reaches higher product quality despite its limitations. CNF change paper properties and also can affect the production process, especially the drainage stage, in which retention additives (RA) are commonly used to promote interaction of cellulose fibers. CNF probably interact with fibers and RA, affecting the drainage stage. However, these interactions vary depending on the type and flocculation mechanism of RA. This research is aimed at establishing possible synergies between CNF and RA to improve paper strength, avoiding negative effects on the drainage process. No further RA were used to retain CNF, taking advantage of the RA already used in the process. Polyvinylamine, chitosan, cationic starch, C-PAM, and C-PAM-B were selected as RA. CNF from eucalyptus kraft pulp and corn stalk organosolv pulp were tested. Strength properties of laboratory sheets were studied, and interactions were assessed by measuring Z-potential. Synergies between PVA, chitosan, C-PAM, and C-PAM-B with CNF were found. Drainage time decreased ranging between 30 and more than 40% using CNF. Strength depended on RA and formation quality. Among the studied options, CNF with C-PAM-B or chitosan resulted in the best formation and higher strengths with a significant drainage time reduction.