Person:
Balea Martín, Ana

Loading...
Profile Picture
First Name
Ana
Last Name
Balea Martín
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Ingeniería Química
Identifiers
UCM identifierDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Recycled Fibers for Sustainable Hybrid Fiber Cement Based Material: A Review
    (Materials, 2021) Balea Martín, Ana; Fuente González, Elena De La; Monte Lara, María Concepción; Blanco Suárez, María Ángeles; Negro Álvarez, Carlos Manuel
    Reinforcing fibers have been widely used to improve physical and mechanical properties of cement-based materials. Most fiber reinforced composites (FRC) involve the use of a single type of fiber to improve cement properties, such as strength or ductility. To additionally improve other parameters, hybridization is required. Another key challenge, in the construction industry, is the implementation of green and sustainable strategies based on reducing raw materials consumption, designing novel structures with enhanced properties and low weight, and developing low environmental impact processes. Different recycled fibers have been used as raw materials to promote circular economy processes and new business opportunities in the cement-based sector. The valuable use of recycled fibers in hybrid FRC has already been proven and they improve both product quality and sustainability, but the generated knowledge is fragmented. This is the first review analyzing the use of recycled fibers in hybrid FRC and the hybridization effect on mechanical properties and workability of FRC. The paper compiles the best results and the optimal combinations of recycled fibers for hybrid FRC to identify key insights and gaps that may define future research to open new application fields for recycled hybrid FRC.
  • Item
    Influence of pretreatment and mechanical nanofibrillation energy on properties of nanofibers from Aspen cellulose
    (Cellulose, 2021) Balea Martín, Ana; Fuente González, Elena De La; Tarrés, Quim; Pèlach, Maria Àngels; Mutjé, Pere; Delgado-Aguilar, Marc; Blanco Suárez, María Ángeles; Negro Álvarez, Carlos Manuel
    The characteristics of cellulose nanofibers (CNFs) depend on many factors such as the raw material, type and intensity of the pre-treatment, and type and severity of the mechanical defibrillation process. The relationship among factors is complex but crucial in determining the final, fit-for-use CNF properties. This study aims to find the relationship between the CNF properties morphology, aspect ratio, nanofibrillation yield, transmittance and cationic demand, and the production process using bleached Aspen thermomechanical pulp as the raw material. Five different types of pretreatments were carried out and five different defibrillation intensities of highpressure homogenization were evaluated. Pretreatments were: PFI refining at 20,000 revolutions, enzymatic hydrolysis with 80 and 240 g of enzyme per ton of dry pulp and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)–mediated oxidation with 5 and 15 mmol of NaClO per gram of dry pulp. From the twenty-five different procedures evaluated, results show that both the pretreatment and the severity of the high-pressure homogenization determined both the fibrillation yield and the CNF morphology. Moreover, the main properties of CNFs (cationic demand, yield, transmittance and aspect ratio) can be estimated from the carboxylic content of the pretreated pulp, which would facilitate the control of the CNF production and their tuning according to the production needs.
  • Item
    Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers
    (Polymers, 2022) Ojembarrena Jiménez, Francisco De Borja; Sánchez Salvador, José Luis; Mateo, Sergio; Balea Martín, Ana; Blanco Suárez, María Ángeles; Merayo Cuevas, Noemí; Negro Álvarez, Carlos Manuel
    Cellulose nanofibers (CNF) are sustainable nanomaterials, obtained by the mechanical disintegration of cellulose, whose properties make them an interesting adsorbent material due to their high specific area and active groups. CNF are easily functionalized to optimize the performance for different uses. The hypothesis of this work is that hydrophobization can be used to improve their ability as adsorbents. Therefore, hydrophobic CNF was applied to adsorb hexavalent chromium from wastewater. CNF was synthetized by TEMPO-mediated oxidation, followed by mechanical disintegration. Hydrophobization was performed using methyl trimetoxysilane (MTMS) as a hydrophobic coating agent. The adsorption treatment of hexavalent chromium with hydrophobic CNF was optimized by studying the influence of contact time, MTMS dosage (0–3 mmol·g −1 CNF), initial pH of the wastewater (3–9), initial chromium concentration (0.10–50 mg·L −1 ), and adsorbent dosage (250–1000 mg CNF·L −1 ). Furthermore, the corresponding adsorption mechanism was identified. Complete adsorption of hexavalent chromium was achieved with CNF hydrophobized with 1.5 mmol MTMS·g −1 CNF with the faster adsorption kinetic, which proved the initial hypothesis that hydrophobic CNF improves the adsorption capacity of hydrophilic CNF. The optimal adsorption conditions were pH 3 and the adsorbent dosage was over 500 mg·L −1 . The maximum removal was found for the initial concentrations of hexavalent chromium below 1 mg·L −1 and a maximum adsorption capacity of 70.38 mg·g −1 was achieved. The kinetic study revealed that pseudo-second order kinetics was the best fitting model at a low concentration while the intraparticle diffusion model fit better for higher concentrations, describing a multi-step mechanism of hexavalent chromium onto the adsorbent surface. The Freundlich isotherm was the best adjustment model.