Person:
Mas Mayoral, José Ramón

Loading...
Profile Picture
First Name
José Ramón
Last Name
Mas Mayoral
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Area
Estratigrafía
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 7 of 7
  • Item
    Sandstone petrography of continental depositional sequences of an intraplate rift basin: western Cameros Basin (North Spain)
    (Journal of sedimentary research, 2009) Arribas Mocoroa, José; Alonso Millán, Ángela; Mas Mayoral, José Ramón; Tortosa, A.; Rodas, Magdalena; Fernández Barrenechea, José María; Alonso Azcárate, Jacinto; Artigas, Rosana
    The Cameros Basin in Central Spain is an intraplate rift basin that developed from Late Jurassic to Middle Albian time along NW–SE trending troughs. The sedimentary basin fill was deposited predominantly in continental environments and comprises several depositional sequences. These sequences consist of fluvial sandstones that commonly pass upward into lacustrine deposits at the top, producing considerable repetition of facies. This study focused on the western sector of the basin, where a total of seven depositional sequences (DS- 1 to DS-7) have been identified. The composition of sandstones permits the characterization of each sequence in terms of both clastic constituents and provenance. In addition, four main petrofacies are identified. Petrofacies A is quartzosedimentolithic (mean of Qm85F2Lt13) and records erosion of marine Jurassic pre-rift cover during deposition of fluvial deposits of DS-1 (Brezales Formation). Petrofacies B is quartzofeldspathic (mean of Qm81F14Lt5) with P/F > 1 at the base. This petrofacies was derived from the erosion of low- to medium-grade metamorphic terranes of the West Asturian–Leonese Zone of the Hesperian Massif during deposition of DS-2 (Jaramillo Formation) and DS-3 (Salcedal Formation). Quartzose sandstones characterize the top of DS-3 (mean of Qm92F4Lt4). Petrofacies C is quartzarenitic (mean of Qm95F3Lt2) with P/F > 1 and was produced by recycling of sedimentary cover (Triassic arkoses and carbonate rocks) in the SW part of the basin (DS-4, Pen˜ - acoba Formation). Finally, depositional sequences 5, 6, and 7 (Pinilla de los Moros–Hortigüela, Pantano, and Abejar–Castrillo de la Reina formations, respectively) contain petrofacies D. This petrofacies is quartzofeldspathic with P/F near zero and a very low concentration of metamorphic rock fragments (from Qm85F11Lt4 in Pantano Formation to Qm73F26Lt1 in Castrillo de la Reina Formation). Petrofacies D was generated by erosion of coarse crystalline plutonics located in the Central Iberian Zone of the Hesperian Massif. In addition to sandstone petrography, these provenance interpretations are supported by clay mineralogy of interbedded shales. Thus, shales related to petrofacies A and C have a variegated composition (illite, kaolinite, and randomly interlayered illite–smectite mixed-layer clays); the presence of chlorite characterizes interbedded shales from petrofacies B; and Illite and kaolinite are the dominant clays associated with petrofacies D. These petrofacies are consistent with the depositional sequences and their hierarchy. An early megacycle, consisting of petrofacies A and B (DS-1 to DS-3) was deposited during the initial stage of rifting, when troughs developed in the West Asturian–Leonese Zone. A second stage of rifting resulted in propagation of trough-bounding faults to the SW, involving the Central Iberian Zone as a source terrane and producing a second megacycle consisting of petrofacies C and D (DS-4, DS-5, DS-6, and DS-7). Sandstone composition has proven to be a powerful tool in basin analysis and related tectonic inferences on intraplate rift basins because of the close correlation that exists between depositional sequences and petrofacies.
  • Item
    Sandstone petrofacies in the northwestern sector of the Iberian Basin
    (Journal of iberian geology, 2007) Arribas Mocoroa, José; Ochoa, M.; Mas Mayoral, José Ramón; Arribas Mocoroa, María Eugenia; González Acebrón, Laura
    During the most active rifting stages in the northwestern sector of the Iberian Basin (Cameros Basin and Aragonese Branch of the Iberian Range), thick sequences of continental clastic deposits were generated. Sandstone records from Rift cycle 1 (Permo-Triassic) and Rift cycle 2 (Late Jurassic-Early Cretaceous) show similarities in composition. Based on the most recent data, this paper describes sandstone petrofacies developed during both rifting periods. Six petrofacies can be distinguished: two associated with Rift cycle 1 (PT-1 and PT-2) and four with Rift cycle 2 (JC-1 to JC-4). All six petrofacies can be classifi ed as sedimentoclastic or plutoniclastic. Sedimentoclastic petrofacies developed during early rifting stages either through the recycling of pre-rift sediments or signifi - cant palaeogeographical changes. These facies comprise a thin succession (<100 m) of clastic deposits with mature quartzose and quartzolithic sandstones containing sedimentary and metasedimentary rock fragments. Carbonate diagenesis is more common than clay mineral diagenesis. Sedimentoclastic petrofacies have been identifi ed in Rift cycle 1 (Saxonian facies, PT-1) and Rift cycle 2 (JC-1 and JC-3; Tithonian and Valanginian, respectively). In the absence of the pre-rift sedimentary cover, metasedimentoclastic petrofacies sometimes develop as a product of the erosion of the low- to medium-grade metamorphic substratum (Petrofacies JC-2, Tithonian-Berriasian). Plutoniclastic petrofacies were generated during periods of high tectonic activity and accompanied by substantial denudation and the erosion of plutonites. Forming thick stratigraphic successions (1000 to 4000 m), these feldspar-rich petrofacies show a rigid framework and clay mineral diagenesis. In Rift cycle 1, plutoniclastic petrofacies (PT-2) are associated with the Buntsandstein. This type of petrofacies also developed in Rift cycle 2 in the Cameros Basin (JC-4) from DS-5 to DS-8 (Hauterivian-Early Albian), and represents the main basin fi ll interval. Sedimentoclastic and plutoniclastic petrofacies can be grouped into three pairs of basic petrofacies. Each pair represents a ‘provenance cycle’ that records a complete clastic cycle within a rifting period. Petrofacies PT-1 and PT-2 represent the ‘provenance cycle’ during Rift-1. In the Cameros Basin, two provenance cycles may be discerned during Rift cycle 2, related both to the Tithonian-Berriasian and the Valanginian-Early Albian megasequences. Tectonics is the main factor controlling petrofacies. Other factors (e.g., maturation during transport, local supply) may modulate the compositional signatures of the petrofacies yet their main character persists and even outlines the hierarchy of the main bounding surfaces between depositional sequences in the intracontinental Iberian Rift Basin.
  • Item
    Multiphase quartz cementation in sandstones: Terra group (Tithonian, Cameros basin, NE Spain)
    (25rd IAS Meeting of Sedimentology : Grece, Patras, 4-7 September 2007, Meeting of Sedimentology. Book and abstracts, 2007) González Acebrón, Laura; Mas Mayoral, José Ramón; Arribas Mocoroa, José; Goldstein, Robert H.; Benito Moreno, María Isabel
  • Item
    Role of sandstone provenance in the diagenetic albitization of feldspars A case study of the Jurassic Tera Group sandstones (Cameros Basin, NE Spain)
    (Sedimentary Geology, 2011) González Acebrón, Laura; Arribas Mocoroa, José; Mas Mayoral, José Ramón
    The Cameros Basin (Iberian Chain, NE Spain) formed during the latest Jurassic–Early Cretaceous rifting stage in an extensional regime characterized by high subsidence rates. Its sedimentary infill (thicker than 6000 m) has been subdivided into eight depositional sequences (DS) mainly composed of continental sediments. DS 1 and DS 2 represent the first rifting stage (Tera Group, Tithonian), mainly formed by fluvial and lacustrine sediments. Sandstone petrofacies evolved from quartz-sedimentolithic in DS 1 to quartz-feldspathic in DS 2 due to the rifting process. In DS 2, three different types of detrital feldspars (K-feldspars, albites and polysynthetic plagioclases) with similar sodium-rich compositions (mean: Ab94.0 An4.5 Or1.5) can be recognized. Chemically pure nonluminescent albites (AbN99%) are common. In DS 2, diagenetic albitization of both plagioclases and K-feldspars is inferred from conventional microscopy observations, cathodoluminescence and electron microprobe analyses. DS 1 contains few plagioclase grains, which showno evidence of transformation into albite.Although the albitization is characterized as diagenetic it seems to be provenance-controlled since it affects the units showing higher original plagioclase/Kfeldspar ratio (DS 2), due to the greater influence of plutonic and metamorphic source areas in DS 2. Possible Na sources are: (1) the percolation ofmoderate to high salinity residual brines fromrelated alkaline lakes developed at top of DS 2 in the eastern sector of the basin, (2) clay mineral reactions (sodium smectite to illite and chlorite) indicated by mudstone composition in the interlayered mudstones, and (3) the replacement of detrital sodium plagioclases by carbonate. These three sources can be complementary.
  • Item
    Destruction of a fluvial reservoir by hydrothermal activity (Cameros Basin, Spain)
    (Sedimentary Geology, 2007) Ochoa, M.; Arribas Mocoroa, José; Mas Mayoral, José Ramón; Goldstein, Robert H.
    This study provides an example of a high-quality fluvial hydrocarbon reservoir that was completely destroyed by hydrothermal processes. The reservoir unit was deposited in the Cameros Basin, located in the NW sector of the Iberian Chain (Spain). The basin was filled with clastic fluvial deposits (sandstones and conglomerates) between Late Berriasian and Early Aptian times. Provenance of sands was mainly from coarse crystalline rocks. A humid tropical climate produced intense weathering of K-feldspar during transport from source to basin. Thus, a mineralogically mature rigid framework with high porosity existed at the time of deposition, which would have constituted a high-quality hydrocarbon reservoir. At present however, the porosity of the reservoir is negligible. Porosity was reduced by a sequence of diagenetic processes: (1) mechanical compaction (i.e. crushing of metamorphic lithic grains) and chemical compaction, (2) kaolinite and siderite cementation, and (3) early quartz cementation. Hydrocarbon emplacement probably occurred between phases (2) and (3). A low-grade metamorphic (hydrothermal) event, reaching greenschist facies, took place during the Late Cenomanian. It dramatically reduced the remaining porosity of the reservoir and destroyed the hydrocarbon charge. Hydrothermal processes which affected the sandstones include (1) re-compaction; (2) late quartz cementation and silicification of remaining feldspars; (3) carbonate cementation; (4) chloritization of feldspars, metamorphic lithic fragments and intrabasinal argillaceous grains; and (5) growth of pyrite and chloritoid crystals on argillaceous material of intrabasinal, extrabasinal or even diagenetic origin. Hydrocarbons that migrated to the margins of the basin escaped these hydrothermal modifications and were preserved. The results of this study may be used to predict the diagenetic and hydrothermal evolution of other potential reservoirs in similar tectonic settings.
  • Item
    Sandstone petrofacies and geochemical imprints in a multihistoried intracratonic Rift hasin (Iberian Basin)
    (25rd IAS Meeting of Sedimentology : Grece, Patras, 4-7 September 2007, Meeting of Sedimentology. Book and abstracts, 2007) Arribas Mocoroa, José; Mas Mayoral, José Ramón; Arribas Mocoroa, María Eugenia; Ochoa, M.; González Acebrón, Laura
  • Item
    The role of the structural arrangement of Hercynian units on the petrogenesis of siliciclastic deposits from the western Cameros Basin (Late Jurassic - Early Cretaceous Iberian Rift), North Spain
    (21rd IAS Meeting of Sedimentology : Davos, Switzerland, 3-5 September 2001, Abstracts and Programe. / Edited by V/rich G. Wortmann and Hanspeter Funk, 2001) Arribas Mocoroa, José; Alonso Millán, Ángela; Mas Mayoral, José Ramón; Tortosa, A.; Wortmann, Ulrich G.; Funk, Hanspeter