Person:
Cabeza Briales, María Concepción

Loading...
Profile Picture
First Name
María Concepción
Last Name
Cabeza Briales
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Farmacia Galénica y Tecnología Alimentaria
Area
Tecnología de los Alimentos
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Modelling of the electron range for use of E-beam treatment for boned dry-cured hams sanitation
    (Innovative Food Science and Emerging Technologies, 2023) Lucas, J.R.; Cárcel, J.A.; Velasco De Diego, Raquel; Benedito, J.; Cabeza Briales, María Concepción
    The heterogeneity of the dry-cured ham size and the fat layer thickness can compromise the electron range throughout the piece and, therefore, the E-beam treatment effectiveness to guarantee its microbiological and sensory quality. The present work aimed to model the electron range in boned dry-cured ham according to the mentioned factors. For that, a dose mapping was carried out applying 2 kGy in experimental blocks manufactured with different thicknesses of lard and/or lean ham. The model, that explains 99.2% of the dose distribution variability, consisted in both a two-phase linear and a modified Gompertz functions. According to the model, the thicker the subcutaneous fat layer, the greater the electron range. The model estimated that the two-face treatment at 2 kGy on hams with a 10-mm external fat layer would be sufficient to sanitize the area of highest risk of contamination during deboning process. Industrial relevance: The export of deboned dry-cured ham to countries such as the USA and China requires the absence of Listeria monocytogenes in 25 g of product. The E-beam treatment at doses between 2 and 3 kGy provides to achieve this objective without product quality losses. The model developed in this work allows to predict the absorbed dose according to the piece size and the thickness of the subcutaneous fat layer. The results show that the distribution of the absorbed dose after bilateral treatment with 2 kGy is more uniform when the thickness of the piece is approximately 80 mm and the thickness of the fat layer is 10–30 mm. The model also makes it possible to quantify the optimal thickness of the specimen when the subcutaneous fat layer is <10 mm or >30 mm
  • Item
    Effect of sanitizing E-beam treatment on the binding capacity of plasma powder used to manufacture restructured dry-cured ham models
    (LWT - Food Science and Technology, 2021) Lucas, J.R.; Velasco De Diego, Raquel; García Sanz, María Luisa; Selgas Cortecero, María Dolores; Cabeza Briales, María Concepción
    The manufacture of restructured dry-cured hams involves a contamination risk with pathogens such as Listeria monocytogenes. This work studied the effect of E-beam, as sanitizing treatment, on the binding capacity of plasma powder (PP). For that, model systems of restructured boneless dry-cured hams were manufactured by adapting the conventional processing of dry-cured hams to their reduced size. They were contaminated with L. innocua as a surrogate and treated bilaterally with 2 kGy. The PP binding properties were determined using tensile tests. The microstructure of the binding area was studied by scanning electron microscopy. The results showed that the binding force increased progressively with the processing time and was not modified by the irradiation treatment. Scanning electron microscopy of the binding area showed increasingly compact and dense structures probably related to changes in proteins structure induced by the treatment