Person:
Ábalos Álvarez, Marta

Loading...
Profile Picture
First Name
Marta
Last Name
Ábalos Álvarez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Linking air stagnation in Europe with the synoptic- to large-scale atmospheric circulation
    (Weather and Climate Dynamics, 2021) Maddison, Jacob W; Ábalos Álvarez, Marta; Barriopedro Cepero, David; García Herrera, Ricardo Francisco; Garrido Pérez, José Manuel; Ordóñez García, Carlos
    The build-up of pollutants to harmful levels can occur when meteorological conditions favour their production or accumulation near the surface. Such conditions can arise when a region experiences air stagnation. The link between European air stagnation, air pollution and the synoptic- to large-scale circulation is investigated in this article across all seasons and the 1979–2018 period. Dynamical indices identifying atmospheric blocking, Rossby wave breaking, subtropical ridges, and the North Atlantic eddy-driven and subtropical jets are used to describe the synoptic- to large-scale circulation as predictors in statistical models of air stagnation and pollutant variability. It is found that the large-scale circulation can explain approximately 60 % of the variance in monthly air stagnation, ozone and wintertime particulate matter (PM) in five distinct regions within Europe. The variance explained by the model does not vary strongly across regions and seasons, apart from for PM when the skill is highest in winter. However, the dynamical indices most related to air stagnation do depend on region and season. The blocking and Rossby wave breaking predictors tend to be the most important for describing air stagnation and pollutant variability in northern regions, whereas ridges and the subtropical jet are more important to the south. The demonstrated correspondence between air stagnation, pollution and the large-scale circulation can be used to assess the representation of stagnation in climate models, which is key for understanding how air stagnation and its associated climatic impacts may change in the future.
  • Item
    Stratospheric connection to the abrupt end of the 2016/2017 iberian drought
    (Geophysical Research Letters, 2018) Ayargüena Porras, Blanca; Barriopedro Cepero, David; Garrido Pérez, José Manuel; Ábalos Álvarez, Marta; De La Cámara Illescas, Álvaro; García Herrera, Ricardo Francisco; Calvo, N.; Ordóñez García, Carlos; Ayarzagüena Porras, Blanca
    Southwestern Europe experienced extraordinary rainy and windy conditions in March 2018, leading to the end of the most severe drought since 1970 at continental scale. This anomalous weather was linked to a persistent negative North Atlantic Oscillation pattern. Two weeks earlier a sudden stratospheric warming (SSW) took place, preceded by the strongest planetary wave activity on record. In this study, we explore the connection between the SSW and the weather shift by employing a weather regime approach and flow analogues. The timing of the downward propagation of the stratospheric anomalies, the transition to and persistence of the negative North Atlantic Oscillation weather regime, and the sudden precipitation increase are all consistent with the typical tropospheric state after SSWs. Our results evidence a significant role of the 2018 SSW in the record-breaking precipitation event.
  • Item
    Assessing the Projected Changes in European Air Stagnation due to Climate Change
    (Journal of Climate, 2023) Maddison, Jacob W; Ábalos Álvarez, Marta; Barriopedro Cepero, David; García Herrera, Ricardo Francisco; Garrido Pérez, José Manuel; Ordóñez García, Carlos; Simpson, Isla R
    Air pollution is a major environmental threat to human health. Pollutants can reach extreme levels in the lower atmosphere when weather conditions permit. As pollutant concentrations depend on scales and processes that are not fully represented in current global circulation models (GCMs), and it is often too computationally expensive to run models with atmospheric chemistry and aerosol processes, air stagnation is often used as a proxy for pollution events with particular success in Europe. However, the variables required to identify air stagnation can have biases in GCM output, which adds uncertainty to projected trends in air stagnation. Here, the representation of air stagnation in GCMs is assessed for Europe in the historical period and in end-of-century projections based on a high-emission scenario using three methods for identifying air stagnation. The monthly frequency of stagnation during summer and autumn is projected to increase with climate change when stagnation is identified by a well-established index. However, this increase is not present when air-stagnation frequency is estimated using a statistical model based on the synoptic- to large-scale atmospheric circulation. This implies that the projected increases in air stagnation are not driven by an increase in frequency or severity of large-scale circulation events that are conducive to stagnation. Indeed, projected changes to the atmospheric circulation in GCMs, in particular a reduction in atmospheric block frequency, would suggest a reduction in future air stagnation. Additional analyses indicate that the projected increases in stagnation frequency follow the trend toward more frequent dry days, which is apparently unrelated to the large-scale drivers of air stagnation.
  • Item
    Project number: 151
    Meteolab como herramienta educativa de Meteorología en el Aula
    (2021) Rodríguez De Fonseca, María Belén; Ábalos Álvarez, Marta; Alvarez Solas, Jorge; Ayarzagüena Porras, Blanca; Benito Barca, Samuel; Calvo Fernández, Natalia; de la Cámara Illescas, Alvaro; Durán Montejano, Luis; García Herrena, Ricardo; Garrido Pérez, José Manuel; Gómara Cardalliaguet, Iñigo; Losada Doval, Teresa; Mohino Harris, Elsa; Montoya Redondo, Marisa Luisa; Ordoñez García, Carlos; Polo Sánchez, Irene; Robinson, Alexander James; Sastre Marugán, Mariano; Serrano Mendoza, Encarnación; Yagüe Anguis, Carlos; Zurita Gotor, Pablo; García Burgos, Marina; González Alemán, Juan Jesús; González Barras, Rosa María; González Rouco, Jesús Fidel; Martín Gómez, Verónica; Maqueda Burgos, Gregorio
    El Presente proyecto es una continuación de proyectos anteriores dentro de la plataforma de divulgación Meteolab. Meteolab es un proyecto de divulgación de Meteorología y Clima que tiene su origen en 2002, cuando se comenzaron a diseñar experimentos de bajo coste con materiales caseros para la Semana de la Ciencia de la Comunidad de Madrid (CAM). Con los años, se generó un conocimiento que se materializó en 2010 con la concesión de un Proyecto de Innovación Educativa (PIE) financiado por la Universidad Complutense de Madrid (UCM), dirigido por Belén Rodríguez de Fonseca. Gracias a este primer proyecto en el que trabajaron muchos profesores y alumnos de ciencias de la atmósfera, se gestó un portal web (meteolab.fis.ucm.es) en el que los experimentos se explicaban y se grababan para impulsar su difusión. Más adelante, en un segundo proyecto de Innovación Educativa, dirigido por la profesora Maria Luisa Montoya, los contenidos fueron traducidos al inglés. En concreto, los experimentos que componen Meteolab tienen como principal objetivo entender los principios y variables que determinan el comportamiento de las masas de aire en la atmósfera y de agua en el océano. La idea consiste en visualizar con experimentos sencillos las leyes físicas que gobiernan la atmósfera y el océano: movimientos horizontales y verticales, cambios de estado, mezcla y equilibrio, así como la interacción entre componentes. Se persigue observar los procesos meteorológicos familiares, como son la formación de una nube, los tornados, la convección, la formación de borrascas o la lluvia, entendiendo los procesos físicos que los producen. Finalmente, Meteolab permite también visualizar fenómenos climáticos como el efecto invernadero, el fenómeno de El Niño, el deshielo del Ártico, la influencia de los volcanes en el clima o la subida del nivel del mar. Existe un catálogo de experimentos, la mayoría de los cuales pueden consultarse a través del portal meteolab.fis.ucm.es, encontrándose todos ellos físicamente localizados en el Laboratorio Elvira Zurita de la Facultad de Ciencias Físicas. Tras la experiencia acumulada durante los 18 años de existencia de Meteolab, en los que se han adecuado las explicaciones de los experimentos a distintos niveles de dificultad (infantil, primaria, secundaria, bachillerato y Universidad de mayores), se ha sugerido la idoneidad de adaptar los contenidos a los estudiantes del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Así, por ejemplo, cuando se explica la formación de una nube, se puede ir complicando el discurso dependiendo de los diferentes ciclos de la enseñanza. De esta manera, para un nivel de escuela primaria uno sólo tiene que explicar que el aire se enfría al ascender, y al enfriarse se forman gotas de agua que forman las nubes. Al llegar a secundaria, los estudiantes aprenden el concepto de presión atmosférica y la relación entre la temperatura, la presión y el volumen de una parcela de aire. Más adelante, en el Grado en Física, se estudia la tensión de vapor, la expansión adiabática y la existencia de núcleos de condensación. Finalmente, en el Máster en Meteorología se aprenden los distintos procesos de nucleación y tipos de nubes. Todos estos conceptos van complicando la explicación, por lo que un mismo experimento puede explicarse tanto en una escuela infantil como en una Universidad. Es por ello, que, aprovechando la plataforma de divulgación Meteolab, hemos decidido dar un paso adelante y adaptar y ampliar los contenidos de Meteolab, para así poder integrarlos en los currícula del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Con todo ello, los objetivos del presente proyecto han sido: -Implementar los experimentos de Meteolab en el Aula, tanto en las asignaturas de Grado como en las de Máster. -Adaptar los contenidos existentes del portal web Meteolab (meteolab.fis.ucm.es) a las asignaturas relacionadas con Meteorología del Grado en Física y del Máster en Meteorología y Geofísica, con el fin de visualizar procesos físicos que se explican en el aula. -Añadir a Meteolab nuevos contenidos en relación con la dinámica de la atmósfera y el cambio climático. -Evaluar la mejora de la comprensión por parte del alumnado de los procesos que tienen lugar principalmente en la atmósfera y el océano, y su relación con el clima y su variabilidad.