Person:
Martín Sabroso, Cristina

Loading...
Profile Picture
First Name
Cristina
Last Name
Martín Sabroso
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Farmacia Galénica y Tecnología Alimentaria
Area
Farmacia y Tecnología Farmaceútica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect
    (European Journal of Pharmaceutics and Biopharmaceutics, 2022) Alonso González, Mario; Quispe Chauca, Prissila; Fernández Carballido, Ana María; Lozza, Irene; Martín Sabroso, Cristina; Fraguas Sánchez, Ana Isabel
    Abnormal angiogenesis plays a main role in the pathogenesis of many diseases such as cancer, and inflammatory autoimmune disorders among others, and its inhibition represents a potential strategy for their management. Celecoxib (CXB) that is one of the most prescribed selective COX-2 inhibitors and is currently approved for the treatment of osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis inhibits angiogenesis. The objective of this manuscript was to design, develop, and characterize polymeric nanoparticles for the parenteral administration of CXB which the aim of facilitating its administration and improving its antiangiogenic activity while decreasing its adverse effects. A Plackett-Burman design was used to optimize the formulation. The PVA concentration, the sonication time, the sonicator amplitude and the CXB:PLGA ratio were selected as independent variables and particle size, polydispersity index, drug loading, and entrapment efficiency as responses. Optimized nanoparticles (formulations F2, F6 and F9) showed a particle size around 280 nm, a low polydispersion (PDI ≤ 0.2), a negative zeta potential around -25mV, a high entrapment efficiency (above 88%) and a controlled drug release for at least 10 days. Moreover, they were physically and chemically stable for at least 3 months when stored at 4°C. Interestingly, CXB-loaded nanoparticles showed a higher angiogenesis inhibition than CXB in solution administered at the same concentration. F9 nanoparticles that were prepared using PVA at 0.5%, a sonication time of 7 minutes, a sonicator amplitude of 80% and a CXB:PLGA ratio of 20:100 were selected as the most suitable CXB-formulation. It represents a promising strategy to administer CXB and improve its efficacy in disorders with pathological angiogenesis such as cancer and arthritic diseases.
  • Item
    Limitations and Challenges in the Stability of Cysteamine Eye Drop Compounded Formulations
    (Pharmaceuticals, 2022) Martín Sabroso, Cristina; Alonso González, Mario; Fernández Carballido, Ana María; Aparicio Blanco, Juan; Córdoba Díaz, Damián; Navarro García, Federico; Córdoba Díaz, Manuel; Torres Suárez, Ana Isabel
    Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.