Person:
Beroiz Remírez, Beatriz

Loading...
Profile Picture
First Name
Beatriz
Last Name
Beroiz Remírez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Genética
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 6 of 6
  • Item
    Genetic structure of Spanish populations of Ceratitis capitata revealed by RAPD and ISSR markers: implications for resistance management
    (Spanish Journal of Agricultural Research, 2012) Beroiz Remírez, Beatriz; Ortego, Félix; Callejas Hervás, Carmen; Hernández-Crespo, Pedro; Castañera, Pedro; Ochando González, María Dolores
    The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is considered one of the most economically damaging pests of citrus orchards in Spain. The characterization of C. capitata population structure, at a large geographical scale, by using a combination of RAPD and ISSR markers can allow analyzing the genetic variability of this species, and provide some insight in decision making for resistance management, recently recorded in Spain. We compared six Spanish populations along the Mediterranean area (Gerona, Amposta, Tortosa, Castellón, Valencia and Málaga) with populations from other geographical areas where this pest is widely distributed (Africa, Middle East, South America and Atlantic Islands) and two laboratory strains. The results obtained with both types of molecular markers were similar. A dendrogram based on Nei genetic distances showed that all Mediterranean Spanish populations, except the population collected in Gerona, were clearly separated from the rest. However, no clear differentiation among Spanish populations was found, probably as a result of the high levels of gene flow (Nm value of 2.8 for RAPD and 3.9 for ISSR). Implications of these findings on resistance management of C. capitata are discussed.
  • Item
    Allergy-causing mite identification based on PCR amplification of their ribosomal DNA (Abstract)
    (2011) Beroiz Remírez, Beatriz; Lombardero, Manuel; Couso-Ferrer, Francisco; Ortego, Félix; Castañera, Pedro; Barber, Domingo
  • Item
    Mite species identification in the production of allergenic extracts for clinical use and in environmental samples by ribosomal DNA amplification
    (Medical and Veterinary Entomology, 2014) Beroiz Remírez, Beatriz; Couso-Ferrer, Francisco; Ortego, Félix; Chamorro, María José; Arteaga, Carmen; Lombardero, Manuel; Castañera, Pedro; Hernández-Crespo, Pedro
    The identification of allergy-causing mites is conventionally based on morphological characters. However, molecular taxonomy using ribosomal DNA (rDNA) may be particularly useful in the analysis of mite cultures and purified mite fractions in the production of allergenic extracts. Full-length internal transcribed spacers (ITS1 and ITS2) were obtained from Dermatophagoides farinae, Dermatophagoides pteronyssinus, Dermatophagoides microceras and Euroglyphus maynei (Astigmata: Pyroglyphidae), Glycyphagus domesticus and Lepidoglyphus destructor (Astigmata: Glycyphagidae), Tyrophagus fanetzhangorum, Tyrophagus putrescentiae, Tyrophagus longior, Tyrophagus neiswanderi, Acarus farris and Acarus siro (Astigmata: Acaridae), and Blomia tropicalis (Astigmata: Echymopodidae), using mite-specific primers. Polymerase chain reaction (PCR) products were digested with HpaII and RsaI restriction enzymes in order to produce species-specific PCR restricted fragment length polymorphism (RFLP) profiles. A semi-nested re-amplification step was introduced before the RFLP in order to apply the method to environmental samples. Results demonstrate that rDNA sequences can be used for the unambiguous identification of mite species. The PCR–RFLP system allows the identification of species in purified mite fractions when the availability of intact adult mite bodies for morphological identification is limited. This reliable and straightforward PCR–RFLP system and the rDNA sequences obtained can be of use in the identification of allergy-causing mite species.
  • Item
    Population structure of Banana Weevil, an introduced pest in the Canary Islands, studied by RAPD analysis
    (Bulletin of Entomological Research, 2007) Magaña, Cristina; Beroiz Remírez, Beatriz; Hernández Crespo, Pedro; Montes de Oca, M.; Carnero, A.; Ortego, Félix; Castañera, Pedro
    The banana weevil (BW), Cosmopolites sordidus (Coleoptera: Curculionidae), is one of the most important insect pests of bananas and plantains. The mobility and the origin of BW infestations at the Canary Islands (Tenerife, La Gomera and La Palma) have been analysed using Random Amplified Polymorphic DNA (RAPD) as molecular markers. Populations from Costa Rica, Colombia, Uganda and Madeira were also included for comparison. One hundred and fifteen reproducible bands from eight primers were obtained. The level of polymorphism in the populations from the Canary Islands (40–62%) was in the range of those found in other populations. Nei's genetic distances, pair-wise fixation index (FST) values indicate that the closest populations are Tenerife populations among themselves (Nei's genetic distance=0.054–0.100; FST=0.091–0.157) and Costa Rica and Colombia populations (Nei's genetic distance=0.049; FST=0.113). Our results indicate the existence of BW local biotypes with limited gene flow and affected by genetic drift. These results are compatible with a unique event of colonization at Tenerife; whereas, the outbreaks in La Gomera and La Palma may come from independent introductions. The Madeira population is phylogenetically and geographically closer to the Canary Islands populations, suggesting that it is the most likely source of the insects introduced in the Canary Islands.
  • Item
    Multiple mutations in the nicotinic acetylcholine receptor Ccα6 gene associated with resistance to spinosad in medfly
    (Scientific Reports, 2019) Ureña, Enric; Guillem Amat, Ana; Couso Ferrer, Francisco; Beroiz Remírez, Beatriz; Perera, Nathalia; López Errasquín, Elena; Castañera, Pedro; Ortego, Félix; Hernández Crespo, Pedro
    Spinosad is an insecticide widely used for the control of insect pest species, including Mediterranean fruit fly, Ceratitis capitata. Its target site is the α6 subunit of the nicotinic acetylcholine receptors, and different mutations in this subunit confer resistance to spinosad in diverse insect species. The insect α6 gene contains 12 exons, with mutually exclusive versions of exons 3 (3a, 3b) and 8 (8a, 8b, 8c). We report here the selection of a medfly strain highly resistant to spinosad, JW-100 s, and we identify three recessive Ccα6 mutant alleles in the JW-100 s population: (i) Ccα63aQ68* containing a point mutation that generates a premature stop codon on exon 3a (3aQ68*); (ii) Ccα63aAG>AT containing a point mutation in the 5′ splicing site of exon 3a (3aAG > AT); and (iii) Ccα63aQ68*-K352* that contains the mutation 3aQ68* and another point mutation on exon 10 (K352*). Though our analysis of the susceptibility to spinosad in field populations indicates that resistance has not yet evolved, a better understanding of the mechanism of action of spinosad is essential to implement sustainable management practices to avoid the development of resistance in field populations.
  • Item
    Cross-resistance to insecticides in a malathion-resistant strain of ceratitis capitata (Diptera: Tephritidae)
    (Journal of Economic Entomology, 2011) Couso Ferrer, Francisco; Arouri, Rabeh; Beroiz Remírez, Beatriz; Perera, Nathalia; Cervera, Amelia; Navarro Llopis, Vicente; Castañera, Pedro; Hernández Crespo, Pedro; Ortego, Félix
    Resistance to malathion has been reported in field populations of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in areas of Spain where an intensive use of this insecticide was maintained for several years. The main goal of this study was to determine whether resistance to malathion confers cross-resistance to different types of insecticides. Susceptibility bioassays showed that the malathion-resistant W-4Km strain (176-fold more resistant to malathion than the susceptible C strain) has moderate levels of cross-resistance (three- to 16-fold) to other organophosphates (trichlorphon, diazinon, phosmet and methyl-chlorpyrifos), the carbamate carbaryl, the pyrethroid lambda-cyhalothrin, and the benzoylphenylurea derivative lufenuron, whereas cross-resistance to spinosad was below two-fold. The W-4Km strain was selected with lambda-cyhalothrin to establish the lambda-cyhalothrin-resistant W-1Kλ strain (35-fold resistant to lambda-cyhalothrin). The synergistic activity of the esterase inhibitor DEF with lambda-cyhalothrin and the increase in esterase activity in the W-1Kλ strain suggests that esterases may be involved in the development of resistance to this insecticide. Our results showed that resistance to malathion may confer some degree of cross-resistance to insecticides currently approved for the control of Mediterranean fruit fly in citrus crops (lambda-cyhalothrin, lufenuron, and methyl-chlorpyrifos). Especially relevant is the case of lambda-cyhalothrin, because we have shown that resistance to this insecticide can rapidly evolve to levels that may compromise its effectiveness in the field.