Person:
Herrero Vanrell, María Del Rocío

Loading...
Profile Picture
First Name
María Del Rocío
Last Name
Herrero Vanrell
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Farmacia Galénica y Tecnología Alimentaria
Area
Farmacia y Tecnología Farmaceútica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 32
  • Item
    Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration
    (European Journal of Pharmaceutical Sciences, 2016) Rodríguez Villanueva, Javier; Bravo Osuna, Irene; Herrero Vanrell, María Del Rocío; Molina Martínez, Irene Teresa; Guzmán Navarro, M.
    Successful therapy for chronic diseases affecting the posterior segment of the eye requires sustained drug concentrations at the site of action for extended periods of time. To achieve this, it is necessary to use high systemic doses or frequent intraocular injections, both associated with serious adverse effects. In order to avoid these complications and improve patient`s quality of life, an experimental study has been conducted on the preparation of a new generation of biodegradable poly D-L(lactide-co-glycolide (50:50) (PLGA) polymer microspheres (MSs) loaded with Dxm, vitamin E and/or human serum albumin (HSA). Particles were prepared according to a S/O/W encapsulation method and the 20-40μm fraction was selected. This narrow size distribution is suitable for minimally invasive intravitreal injection by small calibre needles. Characterisation of the MSs showed high Dxm loading and encapsulation efficiency (> 90%) without a strong interaction with the polymer matrix, as revealed by DSC analysis. MSs drug release studies indicated a small burst effect (lower than 5%) during the first five hours and subsequently, drug release was sustained for at least 30 days, led by diffusion and erosion mechanisms. Dxm release rate was modulated when solid state HSA was incorporated into MSs formulation. SDS-PAGE analysis showed that the protein maintained its integrity during the encapsulation process, as well as for the release study. MSs presented good tolerance and lack of cytotoxicity in macrophages and HeLa cultured cells. After 12 months of storage under standard refrigerated conditions (41ºC), MSs retained appropriate physical and chemical properties and analogous drug release kinetics. Therefore, we conclude that these microspheres are promising pharmaceutical systems for intraocular administration, allowing controlled release of the drug.
  • Item
    Project number: 215
    Diseño de herramientas para la adquisición de competencias transversales CT9, CT11, CT12 y CT13 que fomenten el desarrollo de habilidades de aplicación en la formación y competencia laboral de alumnos del Grado en Farmacia
    (2018) Gil Alegre, María Esther; Molina Martínez, Irene Teresa; Pastoriza Abal, María Pilar; Herrero Vanrell, María Del Rocío; Bravo Osuna, Irene; Ruiz Caro, Roberto; Arranz Romera, Alicia
    A través de las competencias transversales comunes al Grado en Farmacia y a la materia Tecnología Farmacéutica se pretende dotar a los alumnos de herramientas para el desarrollo de habilidades necesarias en sus estudios y en su empleabilidad.
  • Item
    Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina
    (Advanced Drug Delivery Reviews, 2018) Bravo Osuna, Irene; Andrés-Guerrero, Vanessa; Arranz Romera, Alicia; Esteban Pérez, Sergio; Molina Martínez, Irene Teresa; Herrero Vanrell, María Del Rocío
    Pathologies affecting the optic nerve and the retina are one of the major causes of blindness. These diseases include age-related macular degeneration (AMD), diabetic Retinopathy (DR) and glaucoma, among others. Also, there are genetic disorders that affect the retina causing visual impairment. The prevalence of neurodegenerative diseases of the posterior segment are increased as most of them are related with the elderly. Even with the access to different treatments, there are some challenges in managing patients suffering retinal diseases. One of them is the need for frequent interventions. Also, an unpredictable response to therapy has suggested that different pathways may be playing a role in the development of these diseases. The management of these pathologies requires the development of controlled drug delivery systems able to slow the progression of the disease without the need of frequent invasive interventions, typically related with endophthalmitis, retinal detachment, ocular hypertension, cataract, inflammation, and floaters, among other. Biodegradable microspheres are able to encapsulate low molecular weight substances and large molecules such as biotechnological products. Over the last years, a large variety of active substances has been encapsulated in microspheres with the intention of providing neuroprotection of the optic nerve and the retina. The purpose of the present review is to describe the use of microspheres in chronic neurodegenerative diseases affecting the retina and the optic nerve. The advantage of microencapsulation of low molecular weight drugs as well as therapeutic peptides and proteins to be used as neuroprotective strategy is discussed. Also, a new use of the microspheres in the development of animal models of neurodegeneration of the posterior segment is described.
  • Item
    Evaluation of polyesteramide (PEA) and polyester (PLGA) microspheres as intravitreal drug delivery systems in albino rats
    (Biomaterials, 2017) Peters, Tobias; Kim, Seong-Woo; Castro, Vinicius; Stingl, Krunoslav; Strasser, Torsten; Bolz, Sylvia; Schraermeyer, Ulrich; Mihov, George; Zong, MengMeng; Andrés Guerrero, Vanesa; Herrero Vanrell, María Del Rocío; Dias, Aylvin; Cameron, Neil; Zrenner, Eberhart
    Purpose: To study the suitability of injectable microspheres based on poly(ester amide) (PEA) or poly lactic-co-glycolic acid (PLGA) as potential vehicles for intravitreal drug delivery in rat eyes. Dexamethasone loaded PEA microspheres (PEA+DEX) were also evaluated. Methods: Forty male Sprague Dawley rats were divided into four groups that received different intravitreally injected microspheres: PEA group (n=12); PLGA group (n=12); PEA+DEX group (n=8); and control group (no injection, n=8). Electroretinography (ERG), fundus autofluorescence (FAF), and spectral domain optical coherence tomography (sdOCT) were performed at baseline, weeks 1 and 2, and months 1, 2, and 3 after intravitreal injection. Eyes were histologically examined using light microscopy and transmission electron microscopy at the end of the in vivo study. Results: There were no statistically significant changes in ERG among the groups. Abnormal FAF pattern and abnormal deposits in OCT were observed after injection but almost completely disappeared between week 2 and month 3 in all injected groups. GFAP staining showed that Müller glia cell activation was most pronounced in PLGA-injected eyes. Increased cell death was not observed by TUNEL staining at month 1. In electron microscopy at month 3, the remnants of microparticles were found in the retinal cells of all injected groups, and loss of plasma membrane was seen in the PLGA group. Conclusions: Although morphological changes such as mild glial activation and material remnants were observed histologically 1 month and 3 months after injection in all injected groups, minor cell damage was noted only in the PLGA group at 3 months after injection. No evidence of functional abnormality relative to untreated eyes could be detected by ERG 3 months after injection in all groups. Changes observed in in vivo imaging such as OCT and FAF disappeared after 3 months in almost all cases.
  • Item
    Pharmaceuticalmicroscale and nanoscale approaches for efficient treatment of ocular diseases
    (Drug Delivery and Translational Research, 2016) Bravo Osuna, Irene; Andrés Guerrero, Vanesa; Pastoriza Abal, María Pilar; Molina Martínez, Irene Teresa; Herrero Vanrell, María Del Rocío
    Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
  • Item
    Performance of the rebound, noncontact and Goldmann applanation tonometers in routine clinical practice
    (Acta Ophthalmologica, 2011) Martínez De La Casa Fernández-Borrella, José María; Jimenez-Santos, M; Saenz Frances, F; Matilla-Rodero, M; Méndez Hernández, Carmen Dora; Herrero Vanrell, María Del Rocío; García Feijoo, Julián
    Purpose: To compare rebound tonometry (RBT) and noncontact tonometry (NCT) using Goldmann applanation tonometry (GAT) as reference. Methods: The study sample was comprised of 108 eyes of 108 subjects consecutively examined at a general ophthalmology clinic. The order of use of the three tonometers was randomized at the study outset. The difference between the methods was plotted against the mean to compare the tonometers. The hypothesis of zero bias was examined by a paired t-test and 95% limits of agreement (LoA) were also calculated. Differences with respect to GAT were assessed according to the international standard for ocular tonometers (ISO 8612). Results: Mean intraocular pressures (IOPs ± SD) obtained using the three instruments were GAT 17.5 ± 3.8 mmHg; RBT 18.5 ± 5.5 mmHg and NCT 17.4 ± 5.6 mmHg. The 95% LoA were from -7.9 to +7.7 mmHg for NCT-GAT and from -6.8 mmHg to +8.7 mmHg for RBT-GAT. A difference with respect to GAT under ±1 mmHg was observed in 11.1% of the eyes measured by NCT and 18.5% of eyes measured by RBT. According to the IOP ranges established by the ISO 8612, differences from GAT measurements greater than ±5 mmHg were always above the accepted level of 5%. Correlations between IOP and central corneal thickness (CCT) were significant for all three tonometers. Conclusions: The rebound and noncontact tonometer behaved similarly when used to measure IOP taking GAT measurements as the reference standard. Neither tonometer fulfilled ISO 8612 requirements. Both were similarly influenced by CCT. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.
  • Item
    CHAPTER 10: Drug Delivery Systems for the Treatment of Diseases Affecting the Retina and Optic Nerve.
    (Therapies for Retinal Degeneration: Targeting Common Processes, 2018) Bravo Osuna, Irene; Andrés Guerrero, Vanesa; Molina Martínez, Irene Teresa; Herrero Vanrell, María Del Rocío; De la Rosa, Enrique J.; Cotter, Thomas G.
    Diseases affecting the retina and the optic nerve are the major causes of irreversible blindness in the elderly population. Succesful therapy of these pathologies requires frequent administration of the active molecule close to the retinal target site. Intraocular drug delivery systems (IDDS) are emerging therapeutic tools in the treatment of diseases affecting the posterior segment, as they are able to provide effective concentrations of the drug for a long period, thus avoiding successive injections. Depending on their size, IDDS are classified in implants, microsystems and nanosystems. This chapter covers a general description of the IDDS useful for the treatment of diseases affecting retinal structures. © The Royal Society of Chemistry 2019.
  • Item
    Nano and microtechnologies for ophthalmic administration. An overview
    (Journal of Drug Delivery Science and Technology, 2013) Herrero Vanrell, María Del Rocío; Vicario De La Torre, Marta; Andrés-Guerrero, Vanessa; Barbosa-Alfaro, Deyanira; Molina Martínez, Irene Teresa; Bravo Osuna, Irene
    Ocular drug delivery is one of the most challenging fields of pharmaceutical research. They are generally employed to overcome the static (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers) and dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution) of the eye. Ophthalmic formulations must be sterile, and the biomaterials used in the preparation of pharmaceutical systems completely compatible and extremely well tolerated by ocular tissues. The location of the target tissue in the eye will determine the route of administration. Ophthalmic administration systems are intended for topical, intraocular and periocular administration. In this review we describe the main pharmaceutical nano- and microsystems currently under study to administrate drugs in the eye, covering microparticles, nanoparticles, liposomes, microemulsions, niosomes and dendrimers. We have performed the corresponding revision of the published scientific literature always emphasizing the technological aspects. The review discusses also the biomaterials used in the preparation of the nano and microsystems of ophthalmic drug delivery, fabrication techniques, therapeutic significances, and future possibilities in the field.
  • Item
    Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma
    (Advances in Therapy, 2017) Andrés Guerrero, Vanesa; Perucho González, Lucía; García Feijoo, Julián; Morales Fernández, Laura; Sáenz Francés, Federico; Herrero Vanrell, María Del Rocío; Pablo Júlvez, Luis; Polo Llorens, Vicente; Martínez De La Casa Fernández-Borrella, José María; Konstas, Anastasios Georgios P.
    The approval of one of the first anti-vascular endothelial growth factor (VEGF) agents for the treatment of neovascular age-related macular degeneration one decade ago marked the beginning of a new era in the management of several sight-threatening retinal diseases. Since then, emerging evidence has demonstrated the utility of these therapies for the treatment of other ocular conditions characterized by elevated VEGF levels. In this article we review current perspectives on the use of anti-VEGF drugs as adjuvant therapy in the management of neovascular glaucoma (NVG). The use of anti-VEGFs for modifying wound healing in glaucoma filtration surgery (GFS) is also reviewed. Selected studies investigating the use of anti-VEGF agents or antimetabolites in GFS or the management of NVG have demonstrated that these agents can improve surgical outcomes. However, anti-VEGF agents have yet to demonstrate specific advantages over the more established agents commonly used today. Further studies are needed to evaluate the duration of action, dosing intervals, and toxicity profile of these treatments.
  • Item
    Simultaneous co-delivery of neuroprotective drugs from multiloaded PLGA microspheres for the treatment of glaucoma
    (Journal of Controlled Release, 2019) Arranz Romera, Alicia; Davis, Benjamin M.; Bravo Osuna, Irene; Esteban Pérez, Sergio; Molina Martínez, Irene Teresa; Shamsher, Ehtesham; Ravindran, Nivedita; Guo, Li; Cordeiro, M. Francesca; Herrero Vanrell, María Del Rocío
    Glaucoma is a multifactorial neurodegenerative disorder and one of the leading causes of irreversible blindness globally and for which intraocular pressure is the only modifiable risk factor. Although neuroprotective therapies have been suggested to have therapeutic potential, drug delivery for the treatment of ocular disorders such as glaucoma remains an unmet clinical need, further complicated by poor patient compliance with topically applied treatments. In the present study we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating three recognised neuroprotective agents (dexamethasone (DX), melatonin (MEL) and coenzyme Q10 (CoQ10)) in a single formulation (DMQ-MSs) to create a novel sustained-release intraocular drug delivery system (IODDS) for the treatment of glaucoma. MSs were spherical, with a mean particle size of 29.04 ± 1.89 μm rendering them suitable for intravitreal injection using conventional 25G-32G needles. Greater than 62% incorporation efficiency was achieved for the three drug cargo and MSs were able to co-deliver the encapsulated active compounds in a sustained manner over 30-days with low burst release. In vitro studies showed DMQ-MSs to be neuroprotective in a glutamate-induced cytotoxicity model (IC50 10.00±0.94 mM versus 6.89±0.82 mM in absence of DMQ-MSs) in R28 cell line. In vivo efficacy studies were performed using a well-established rodent model of chronic ocular hypertension (OHT), comparing single intravitreal injections of microspheres of DMQ-MSs to their equivalent individual single drug loaded MSs mixture (MSsmix), empty MSs, no-treatment OHT only and naïve groups. Twenty one days after OHT induction, DMQ-MSs showed a significantly neuroprotective effect on RGCs compared to OHT only controls. No such protective effect was observed in empty MSs and single-drug MSs treated groups. This work suggests that multi-loaded PLGA MSs present a novel therapeutic approach in the management of retinal neurodegeneration conditions such as glaucoma.