Person:
Montero González, Esperanza

Loading...
Profile Picture
First Name
Esperanza
Last Name
Montero González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Geodinámica, Estratigrafía y Paleontología
Area
Geodinámica Externa
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    A survey of domestic wells and pit latrines in rural settlements of Mali: Implications of on-site sanitation on the quality of water supplies
    (International Journal of Hygiene and Environmental Health, 2017) Martínez Santos, Pedro; Díaz Alcaide, Silvia; Martín Loeches, Miguel Martín; García Castro, Javier; Solera Alfonso, Diego; Montero González, Esperanza; García Rincón, J.
    On-site sanitation is generally advocated as a means to eradicate the health hazards associated with open defecation. While this has provided a welcome upgrade to the livelihoods of millions of people in low-income countries, improved sanitation facilities are increasingly becoming a threat to domestic groundwater-based supplies. Within this context, a survey of pit latrines, domestic wells and improved water sources was carried out in a large rural village of southern Mali. All households were surveyed for water, sanitation and hygiene habits. Domestic wells and improved water sources were georeferenced and sampled for water quality (pH, electric conductivity, temperature, turbidity, total dissolved solids, thermotolerant coliforms, chloride and nitrate) and groundwater level, while all latrines were inspected and georeferenced. A GIS database was then used to evaluate the proportion of water points within the influence area of latrines, as well as to underpin multiple regression models to establish the determinants for fecal contamination in drinking supplies. Moreover, an appraisal of domestic water treatment practices was carried out. This revealed that nearly two-thirds of the population uses bleach to purify drinking supplies, but also that domestic-scale treatment as currently implemented by the population is far from effective. It is thus concluded that existing habits could be enhanced as a means to make water supplies safer. Furthermore, population, well and latrine density were all identified as statistically significant predictors for fecal pollution at different spatial scales. These findings are policy-relevant in the context of groundwater-dependent human settlements, since many countries in the developing world currently pursue the objective of eliminating open defecation.
  • Item
    Multiclass spatial predictions of borehole yield in southern Mali by means of machine learning classifiers
    (Journal of Hydrology. Regional studies, 2022) Gómez Escalonilla, Víctor; Diancoumba, Oumou; Traoré, D.Y.; Montero González, Esperanza; Martín Loeches, Miguel Martín; Martínez Santos, Pedro
    Study region: Regions of Bamako, Kati and Kangaba, southwestern Mali Study focus: Machine learning-based mapping of borehole yield. Three algorithms were trained on an imbalanced multiclass database of boreholes, while twenty variables were used as predictors for borehole yield. All models returned balanced and geometric scores in the order of 0.80, with area under the receiver operating characteristic curve up to 0.87. Three main methodological conclusions are drawn: (a) The evaluation of different machine learning classifiers and various resampling strategies and the subsequent selection of the best performing ones is shown to be a good strategy in this type of studies; (b) ad hoc calibration tools, such as data on borehole success rates, provide an apt complement to standard machine learning metrics; and (c) a multiclass approach with an unbalanced database represents a greater challenge than predicting a bivariate outcome, but potentially results in a finer depiction of field conditions. New hydrological insights for the region: Alluvial sediments were found to be the most productive areas, while the Mandingue Plateau has the lowest groundwater potential. The piedmont areas showcase an intermediate groundwater prospect. Elevation, basement depth, slope and geology rank among the most important variables. Lower values of clay content, slopes and elevations, and higher values of basement depth and saturated thickness were linked to the most productive class.