Person:
Rubio Retama, Benito Jorge

Loading...
Profile Picture
First Name
Benito Jorge
Last Name
Rubio Retama
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Química en Ciencias Farmacéuticas
Area
Química Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    10-Fold Quantum Yield Improvement of Ag2S Nanoparticles by Fine Compositional Tuning
    (ACS Applied materials and interfaces, 2020) Ortega Rodríguez, Alicia; Shen, Yingli; Zabala Gutiérrez, Irene; Santos, Harrison D. A.; Torres Vera, Vivian Andrea; Ximedes, Erving; Villaverde Cantizano, Gonzalo; Lifante, José; Gerke, Christoph; Fernández Monsalve, Nuria; Gómez Calderón, Óscar; Melle Hernández, Sonia; Marqués Hueso, José; Méndez González, Diego; Laurenti, Marco; Jones, Callum M. S.; López Romero, Juan Manuel; Contreras Cáceres, Rafael; Jaque García, Daniel; Rubio Retama, Benito Jorge; Garma Pons, Santiago
    Ag2S semiconductor nanoparticles (NPs) are near-infrared luminescent probes with outstanding properties (good biocompatibility, optimum spectral operation range, and easy biofunctionalization) that make them ideal probes for in vivo imaging. Ag2S NPs have, indeed, made possible amazing challenges including in vivo brain imaging and advanced diagnosis of the cardiovascular system. Despite the continuous redesign of synthesis routes, the emission quantum yield (QY) of Ag2S NPs is typically below 0.2%. This leads to a low luminescent brightness that avoids their translation into the clinics. In this work, an innovative synthetic methodology that permits a 10-fold increment in the absolute QY from 0.2 up to 2.3% is presented. Such an increment in the QY is accompanied by an enlargement of photoluminescence lifetimes from 184 to 1200 ns. The optimized synthetic route presented here is based on a fine control over both the Ag core and the Ag/S ratio within the NPs. Such control reduces the density of structural defects and decreases the nonradiative pathways. In addition, we demonstrate that the superior performance of the Ag2S NPs allows for high-contrast in vivo bioimaging. .
  • Item
    Contribution of resonance energy transfer to the luminescence quenching of upconversion nanoparticles with graphene oxide
    (Journal of Colloid and Interface Science, 2020) Méndez González, Diego; Gómez Calderón, Óscar; Melle Hernández, Sonia; González Izquierdo, Jesús; Bañares Morcillo, Luis; López Díaz, David; Velazquez Salicio, M. Mercedes; López Cabarcos, Enrique; Rubio Retama, Benito Jorge; Laurenti, Marco
    Upconversion nanoparticles (UCNP) are increasingly used due to their advantages over conventional fluorophores, and their use as resonance energy transfer (RET) donors has permitted their application as biosensors when they are combined with appropriate RET acceptors such as graphene oxide (GO). However, there is a lack of knowledge about the design and influence that GO composition produces over the quenching of these nanoparticles that in turn will define their performance as sensors. In this work, we have analysed the total quenching efficiency, as well as the actual values corresponding to the RET process between UCNPs and GO sheets with three different chemical compositions. Our findings indicate that excitation and emission absorption by GO sheets are the major contributor to the observed luminescence quenching in these systems. This challenges the general assumption that UCNPs luminescence deactivation by GO is caused by RET. Furthermore, RET efficiency has been theoretically calculated by means of a semiclassical model considering the different nonradiative energy transfer rates from each Er3+ ion to the GO thin film. These theoretical results highlight the relevance of the relative positions of the Er3+ ions inside the UCNP with respect to the GO sheet in order to explain the RET-induced efficiency measurements.
  • Item
    Ion-induced bias in Ag2S luminescent nanothermometers
    (Nanoscale, 2023) París Ogayar, Marina; Méndez González, Diego; Zabala Gutiérrez, Irene; Artiga , Alvaro; Rubio Retama, Benito Jorge; Gómez Calderón, Óscar; Melle Hernández, Sonia; Alda Serrano, Javier; Espinosa, Ana; Jaque, Daniel; Marín Viadel, Ricardo
    Luminescence nanothermometry allows measuring temperature remotely and in a minimally invasive way by using the luminescence signal provided by nanosized materials. This technology has allowed, for example, the determination of intracellular temperature and in vivo monitoring of thermal processes in animal models. However, in the biomedical context, this sensing technology is crippled by the presence of bias (cross-sensitivity) that reduces the reliability of the thermal readout. Bias occurs when the impact of environmental conditions different from temperature also modifies the luminescence of the nanothermometers. Several sources that cause loss of reliability have been identified, mostly related to spectral distortions due to interaction between photons and biological tissues. In this work, we unveil an unexpected source of bias induced by metal ions. Specifically, we demonstrate that the reliability of Ag2S nanothermometers is compromised during the monitoring of photothermal processes produced by iron oxide nanoparticles. The observed bias occurs due to the heat-induced release of iron ions, which interact with the surface of the Ag2S nanothermometers, enhancing their emission. The results herein reported raise a warning to the community working on luminescence nanothermometry, since they reveal that the possible sources of bias in complex biological environments, rich in molecules and ions, are more numerous than previously expected.