Person:
Martín González, Ana María

Loading...
Profile Picture
First Name
Ana María
Last Name
Martín González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Microbiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 9 of 9
  • Item
    Structural and Functional Diversity of Microbial Metallothionein Genes
    (Microbial Diversity in the Genomic Era, 2018) Gutiérrez Fernández, Juan Carlos; Francisco Martínez, Patricia de; Amaro Torres, Francisco; Díaz, Silvia; Martín González, Ana María; Das, Surajit; Dash, Hirak Ranjan
    In the present review, we discussed the concept of metallothionein (MT) and analyzed the structural and functional diversity of microbial MTs, grouping them into three main groups; bacteria, fungi, and protists. Structural diversity is analyzed based on the primary, secondary, and/or tertiary structure of the proteins. Their ability to bind different metals is also analyzed in each microbial group. An in silico and phylogenetic analysis of MT sequences from the main microbial groups has been carried out. The wide functional diversity of these proteins and the regulation of the MT gene expression are also discussed. The presence of several paralog genes in many microorganisms provides a coordinated and multiple response against different types of environmental stressors. Likewise, the main possible biotechnological applications of these proteins are explored, such as molecular tools to design biosensors for evaluating metal contamination and in metal bioremediation.
  • Item
    Metallic Nanoparticles—friends or foes in the battle against antibiotic-Resistant Bacteria?
    (Microorganisms, 2021) Amaro Torres, Francisco; Morón García, Álvaro; Díaz del Toro, Silvia; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.
  • Item
    Quantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite
    (Science of the Total Environment, 2023) De Francisco Martínez, Patricia; Amaro Torres, Francisco; Martín González, Ana María; Aurelio Serrano; Gutiérrez Fernández, Juan Carlos
    A strain of the protozoan ciliate Tetrahymena thermophila adapted to increasing Pb(II) concentrations over two years has shown that one of the resistance mechanisms to this extreme metal stress is the lead biomineralization to chloropyromorphite, one of the most stable minerals in the earth's crust. Several techniques such as microanalysis coupled to transmission and scanning electron microscopy (X-Ray Energy Disperse Spectroscopy), fluorescence microscopy and X-ray power diffraction analysis have revealed the presence of chloropyromorphite as crystalline aggregates of nano-globular structure, together with the presence of other secondary lead minerals. This is the first time that the existence of this type of biomineralization in a ciliate protozoan is described. The Pb(II) bioremediation capacity of this strain has shown that it can remove >90 % of the toxic soluble lead from the medium. A quantitative proteomic analysis of this strain has revealed the main molecular-physiological elements involved in adaptation to Pb(II) stress: increased activity of proteolytic systems against lead proteotoxicity, occurrence of metallothioneins to immobilize Pb(II) ions, antioxidant enzymes to mitigate oxidative stress, and an intense vesicular trafficking presumably involved in the formation of vacuoles where pyromorphite accumulates and is subsequently excreted, together with an enhanced energy metabolism. As a conclusion, all these results have been compiled into an integrated model that could explain the eukaryotic cellular response to extreme lead stress.
  • Item
    AP-1 (bZIP) Transcription Factors as Potential Regulators of Metallothionein Gene Expression in Tetrahymena thermophila
    (Frontiers in Genetics, 2018) Francisco Martínez, Patricia de; Amaro Torres, Francisco; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    Metallothioneins (MT) are multi-stress proteins mainly involved in metal detoxification. MT gene expression is normally induced by a broad variety of stimulus and its gene expression regulation mainly occurs at a transcriptional level. Conserved motifs in the Tetrahymena thermophila MT promoters have been described. These motifs show a consensus sequence very similar to AP-1 sites, and bZIP type transcription factors might participate in the MT gene expression regulation. In this research work, we characterize four AP-1 transcription factors in each of four different analyzed Tetrahymena species, detecting a high conservation among them. Each AP-1 molecule has its counterpart in the other three Tetrahymena species. A comparative qRT-PCR analysis of these AP-1 genes have been carried out in different T. thermophila strains (including metal-adapted, knockout and/or knockdown strains among others), and under different metal-stress conditions (1 or 24 h Cd2+, Cu2+, or Pb2+ treatments). The possible interaction of these transcription factors with the conserved AP-1 motifs present in MT promoters has been corroborated by protein-DNA interaction experiments. Certain connection between the expression patterns of the bZIP and MT genes seems to exist. For the first time, and based on our findings, a possible gene expression regulation model including both AP-1 transcription factors and MT genes from the ciliate T. thermophila has been elaborated.
  • Item
    Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila
    (Science of the Total Environment, 2022) Morón García, Álvaro; Martín González, Ana María; Díaz del Toro, Silvia; Gutiérrez Fernández, Juan Carlos; Amaro Torres, Francisco
    The widespread use of inorganic nanomaterials of anthropogenic origin has significantly increased in the last decade, being now considered as emerging pollutants. This makes it necessary to carry out studies to further understand their toxicity and interactions with cells. In the present work we analyzed the toxicity of CuO nanotubes (CuONT) in the ciliate Tetrahymena thermophila, a eukaryotic unicellular model with animal biology. CuONT exposure rapidly induced ROS generation in the cell leading to oxidative stress and upregulation of genes encoding antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), metal-chelating metallothioneins and cytochrome P450 monooxygenases. Comet assays and overexpression of genes involved in DNA repair confirmed oxidative DNA damage in CuONT-treated cells. Remarkably, both electron and fluorescent microscopy revealed numerous lipid droplets and autophagosomes containing CuONT aggregates and damaged mitochondria, indicating activation of macroautophagy, which was further confirmed by a dramatic upregulation of ATG (AuTophaGy related) genes. Treatment with autophagy inhibitors significantly increased CuONT toxicity, evidencing the protective role of autophagy towards CuONTinduced damage. Moreover, increased formation of lipid droplets appears as an additional mechanism of CuONT detoxification. Based on these results, we present a hypothetical scenario summarizing how T. thermophila responds to CuONT toxicity. This study corroborates the use of this ciliate as an excellent eukaryotic microbial model for analyzing the cellular response to stress caused by toxic metal nanoparticles.
  • Item
    Hints for Metal-Preference Protein Sequence Determinants: Different Metal Binding Features of the Five Tetrahymena thermophila Metallothioneins
    (International Journal of Biological Sciences, 2015) Espart, Anna; Marín, Maribel; Gil Moreno, Selene; Palacios, Óscar; Amaro Torres, Francisco; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos; Capdevilla, Mercé; Atrian, Sílvia
    The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, in-cluding 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tet-rahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been in-ternal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and op-timization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).
  • Item
    Heavy metal whole-cell biosensors using eukaryotic microorganisms: An updated critical review
    (Frontiers in Microbiology, 2015) Gutiérrez Fernández, Juan Carlos; Amaro Torres, Francisco; Martín González, Ana María
    This review analyzes the advantages and disadvantages of using eukaryotic microorganisms to design whole-cell biosensors (WCBs) for monitoring environmental heavy metal pollution in soil or aquatic habitats. Basic considerations for designing a eukaryotic WCB are also shown. A comparative analysis of the promoter genes used to design WCBs is carried out, and the sensitivity and reproducibility of the main reporter genes used is also reviewed. Three main eukaryotic taxonomic groups are considered: yeasts, microalgae, and ciliated protozoa. Models that have been widely analyzed as potential WCBs are the Saccharomyces cerevisiae model among yeasts, the Tetrahymena thermophila model for ciliates and Chlamydomonas model for microalgae. The advantages and disadvantages of each microbial group are discussed, and a ranking of sensitivity to the same type of metal pollutant from reported eukaryotic WCBs is also shown. General conclusions and possible future developments of eukaryotic WCBs are reported.
  • Item
    Environmental Biosensors: A Microbiological View
    (Handbook of Cell Biosensors, 2020) Gutiérrez Fernández, Juan Carlos; Amaro Torres, Francisco; Díaz del Toro, Silvia; Martín González, Ana María; Thouand, G.
    In this mini-review, the potential of using microorganisms to design biosensors for detecting environmental pollutants is analyzed and discussed. A distinction is made between a classical biosensor (CB) and a whole-cell biosensor (WCB), emphasizing their structural components and the possibility of using whole microorganisms as their bioreceptor elements. The advantages and disadvantages of using prokaryotic microorganisms as opposed to eukaryotic microorganisms are described. Likewise, the advantages of using protozoa ciliates) over other eukaryotic microorganisms are also shown. We analyze the current bibliography on biosensors built on microorganisms as bioreceptors of pollutant molecules, such as inorganic (metal (loid)s) or organic (xenobiotics). New trends, such as the prokaryotic riboswitches, microbial two-component systems where the pollutant can be simultaneously detected and bioremediated, along with advances in synthetic biology, are shown as promising tools in the design of environmental biosensors.
  • Item
    Cellular response of adapted and non-adapted Tetrahymena thermophila strains to europium Eu(III) compounds
    (Biology, 2024) Alonso, Patricia; Blas, Javier; Amaro Torres, Francisco; De Francisco Martínez, Patricia; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    Europium is one of the most reactive lanthanides and humans use it in many different applications, but we still know little about its potential toxicity and cellular response to its exposure. Two strains of the eukaryotic microorganism model Tetrahymena thermophila were adapted to high concentrations of two Eu(III) compounds (EuCl3 or Eu2O3) and compared to a control strain and cultures treated with both compounds. In this ciliate, EuCl3 is more toxic than Eu2O3. LC50 values show that this microorganism is more resistant to these Eu(III) compounds than other microorganisms. Oxidative stress originated mainly by Eu2O3 is minimized by overexpression of genes encoding important antioxidant enzymes. The overexpression of metallothionein genes under treatment with Eu(III) compounds supports the possibility that this lanthanide may interact with the -SH groups of the cysteine residues from metallothioneins and/or displace essential cations of these proteins during their homeostatic function. Both lipid metabolism (lipid droplets fusing with europium-containing vacuoles) and autophagy are involved in the cellular response to europium stress. Bioaccumulation, together with a possible biomineralization to europium phosphate, seems to be the main mechanism of Eu(III) detoxification in these cells.