Person:
Martín González, Ana María

Loading...
Profile Picture
First Name
Ana María
Last Name
Martín González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Microbiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    High resistance of Tetrahymena thermophila to paraquat: Mitochondrial alterations, oxidative stress and antioxidant genes expression
    (Chemosphere, 2016) Díaz del Toro, Silvia; Martín González, Ana María; Cubas, Liliana; Ortega, Ruth; Amaro, Francisco; Rodríguez-Martín, Daniel; Gutiérrez Fernández, Juan Carlos
  • Item
    Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms
    (International Journal of Environmental Research and Public Health, 2021) De Francisco, Patricia; Martín González, Ana María; Rodriguez Martín, Daniel; Díaz del Toro, Silvia
    Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
  • Item
    The Tetrahymena metallothionein gene family: twenty-one new cDNAs, molecular characterization, phylogenetic study and comparative analysis of the gene expression under different abiotic stressors
    (BMC Genomics, 2016) Francisco Martínez, Patricia de; Melgar, Laura María; Díaz del Toro, Silvia; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    Background: Ciliate metallothioneins (MTs) are included in family 7 of the MT superfamily. This family has been divided into two main subfamilies: 7a or CdMTs and 7b or CuMTs. All ciliate MTs reported have been isolated from different Tetrahymena species and present unique features with regard to standard MTs. Likewise, an expression analysis has been carried out on some of MT genes under metal stress, corroborating their classification into two subfamilies. Results: We isolated 21 new cDNAs from different Tetrahymena species to obtain a wider view of the biodiversity of these conserved genes. Structural analysis (cysteine patterns) and an updated phylogenetic study both corroborated the previous classification into two subfamilies. A new CuMT from a Tetrahymena-related species Ichthyophthirius multifiliis was also included in this general analysis. We detected a certain tendency towards the presentation of a CdMT tri-modular structure in Borealis group species with respect to Australis group. We report for the first time a semi-complete paralog duplication of a CdMT gene originating a new CdMT gene isoform in T. malaccensis. An asymmetry of the codon usage for glutamine residues was detected between Cd- and CuMTs, and the phylogenetic implications are discussed. A comparative gene expression analysis of several MT genes by qRTPCR revealed differential behavior among them under different abiotic stressors in the same Tetrahymena species. Conclusions: The Tetrahymena metallothionein family represents a quite conserved proteinstructure group with unique features with respect to standard MTs. Both Cd- and CuMT subfamilies present very defined and differentiated characteristics at several levels: cysteine patterns, modular structure, glutamine codon usage and gene expression under metal stress, among others. Gene duplication through evolution seems to be the major genetic mechanism for creating new MT gene isoforms and increasing their functional diversity.