Person:
Rosales Conrado, Noelia

Loading...
Profile Picture
First Name
Noelia
Last Name
Rosales Conrado
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 9 of 9
  • Item
    A combined analytical-chemometric approach for the in vitro determination of polyphenol bioaccessibility by simulated gastrointestinal digestion
    (Analytical and Bioanalytical Chemistry, 2022) Gómez Mejía, Esther; Rosales Conrado, Noelia; León González, María Eugenia; Valverde de la Fuente, Alejandro; Madrid Albarrán, Yolanda
    In this study, an integrated characterisation through polyphenol and cafeine content and antioxidant activity was combined with chemometric analysis to assess the efects of simulated in vitro gastrointestinal digestion on the bioaccessibility of these bioactive compounds from nine diferent tea infusions. Tea infusions were characterised based on total favonoids, total polyphenols and antioxidant activity, together with the determination of individual polyphenol content. Fourteen phenolic compounds, including phenolic acids, stilbenes and favonoids, were selected based on their reported bioactivity and high accessibility, attributed to their low molecular weight. Both polyphenols and cafeine were initially monitored in raw tea infusions and through the diferent digestion stages (salivary, gastric and duodenal) by capillary high performance liquid chromatography coupled to diode array detection (cHPLC-DAD) and/or HPLC coupled to a triple quadrupole mass analyser (HPLC–MS/MS). Multivariate analysis of the studied bioactives, using principal component analysis and cluster analysis, revealed that the decafeination process seems to increase the stability and concentration of the compounds evaluated during digestion. The greatest transformations occurred mainly in the gastric and duodenal stages, where low bioactivity indices (IVBA) were shown for resveratrol and cafeic acid (IVBA=0%). In contrast, the polyphenols gallic acid, chlorogenic acid and quercetin gave rise to their availability in white, green and oolong infusion teas (IVBA>90%). Furthermore, highly fermented black and pu-erh varieties could be designated as less bioaccessible environments in the duodenum with respect to the tested compounds.
  • Item
    Screening the extraction process of phenolic compounds from pressed grape seed residue: Towards an integrated and sustainable management of viticultural waste
    (LWT - Food Science and Technology, 2022) Gómez Mejía, Esther; Vicente Zurdo, David; Rosales Conrado, Noelia; León González, María Eugenia; Madrid Albarrán, Yolanda
    The integrated valorisation of waste from the food chain to obtain value-added compounds with biological functionality will facilitate the transition to the era of a sustainable bioeconomy. To this end, an efficient matrix solid-phase dispersion (MSPD) extraction method was developed and optimized, using experimental factorial design and response surface methodology, for polyphenols recovery from pressed grape seeds obtained after the extraction of essential oils by cold pressing. Gallic, dihydroxybenzoic, p-coumaric and trans-ferulic acid, naringin, resveratrol, quercetin and kaempferol were quantified at 2.1–295 μg g−1 by capillary liquid chromatography coupled to a diode array detector and a mass analyser (cLC-DAD-MS). Furthermore, total antioxidant activity, free radical scavenging and lipid peroxidation suppression, together with the inhibition of beta-amyloid (Αβ42) protein aggregation, considered one of the main pathological effects of Alzheimer's disease, were evaluated. Potent lipid peroxidation inhibition (IC50 0.238 ± 0.003 ng g−1) was observed, along with the reduction of Αβ42 fibril width (9.4–54.8%) and aggregation. The results presented proved that the MSPD extraction method could be considered as an efficient and sustainable methodology to produce phenolic-rich extracts that may serve as an alternative antioxidant and neuroprotective ingredient for the food or pharmaceutical formulations, leading to the cascade valorisation of winery by-products.
  • Item
    Anti-inflammatory activity of ethyl acetate and n-butanol extracts from Ranunculus macrophyllus Desf. and their phenolic profile
    (Journal of Ethnopharmacology, 2021) Deghima, Amirouche ; Righi, Nadjat; Rosales Conrado, Noelia; León González, María Eugenia De; Baali, Faiza; Gómez Mejía, Esther; Madrid Albarrán, María Yolanda; Bedjou, Fatiha
    Ethnopharmacological relevance: The members of the genus Ranunculus have counter-irritating properties and thus, they are traditionally used for treating anti-inflammatory disorders and other skin conditions. Ranunculus macrophyllus Desf. is a wild medicinal plant growing in Algeria and traditionally used to treat some cutaneous skin disorders. Aim: The aim of this study was to characterize the composition of the ethyl acetate and n-butanol extracts from Ranunculus macrophyllus Desf. as well as to elucidate and to compare their effect against acute skin inflammation. Moreover, both the antioxidant activity and the acute toxicity of the plant extracts were also studied. Materials and methods: Spectrophotometric and chromatographic methods were employed to identify and quantify phenolic compounds and triterpenoids from R. macrophyllus Desf. fractions. The antioxidant activity was estimated using the phosphomolebdenum, DPPH, reducing power and β-carotene bleaching assays. The ethyl acetate and n-butanol extracts were screened for their anti-inflammatory activities using ex-vivo membrane stabilizing assays and in-vivo acute skin inflammation model. Results: Ethyl acetate fraction showed the highest amounts of total phenolic compounds (413 ± 4 μg GAE/mg extract) and triterpenoids (70.4 ± 1.8 μg UAE/mg extract). Rutin, hesperidin, myricetin and kaempferol were the major compounds identified in the different fractions. Ethyl acetate fraction exhibited strong DPPH• radical scavenging ability (IC50 1.6 ± 0.2 μg/mL), high total antioxidant capacity (447 ± 7 μg AAE/mg extract) and reducing power (514 ± 8 μg AAE/mg extract). Ethyl acetate fraction inhibited (73.4 ± 0.3) % of linoleic acid peroxidation. Ethyl acetate and n-butanol fractions did not have any visible toxicity at 2000 mg/kg and presented excellent membrane stabilizing ability. The inhibition of xylene induced ear inflammation was (38 ± 4) % and (46 ± 1) % for RM-B and RM-EA, respectively. Conclusions: The high content of both phenolic compounds and triterpenoids combined with the remarkable antiinflammatory effect and antioxidant activity of ethyl acetate and n-butanol extracts from R. macrophyllus Desf. support the wide spread use of this traditional plant on some skin disorders (inflammatory skin disorders).
  • Item
    Valorisation of the green waste parts from large-leaved buttercup (Ranunculus macrophyllus Desf.): phenolic profile and health promoting effects study
    (Waste and biomass valorization, 2020) Deghima, Amirouche; Righi, Nadjat; Rosales Conrado, Noelia; León González, María Eugenia De; Baali, Faiza; Gómez Mejía, Esther; Madrid Albarrán, María Yolanda; Bedjou, Fatiha; Springer
    Due to the extensive use of Ranunculus macrophyllus Desf. roots for medicinal purposes, most of the leafy green parts are just wasted. The aim of this work is to valorize the leafy green parts and promote their application in different modern industries. Methods For this purpose, we studied the phenolic profile of R. macrophyllus Desf. (RM-B) using chromatographic and spectrophotometric methods and we tested the in-vitro antioxidant activity and the in-vivo effect of RM-B on plasma and liver antioxidant statuts. Results RM-B contained high amounts of polyphenols (675 mg GAE/100 g dry weigh dw) and flavonoids (105 mg QE/100 g dw). In-vitro, RM-B exhibited promising radical scavenging activity against 2,2′-azino-bis(3-éthylbenzothiazoline-6-sulphonique) (ABTS+·) (IC50: 247 µg/mL), hydrogen peroxide radicals (IC50: 626 µg/mL) and inhibited oxidative red blood cells hemolysis (IC50: 120 µg/mL), RM-B also showed strong reducing power (982 µM FeSO4/mg extract). In-vivo, RM-B improved the radical scavenging ability and reducing power of plasma and enhanced liver antioxidant status by increasing catalase and reduced glutathione levels and decreasing malondialdhyde levels without altering the key serum biochemical parameters reflecting liver and kidney functions. Polyphenols identified using capillary LC-DAD and LC–MS/MS analyses like hesperidin (131.2 mg/100 g dw), rutin (29.0 mg/100 g dw) and p-coumaric acid (5.8 mg/100 g dw), may be responsible for the health promoting effects of RM-B. Conclusion We may conclude that R. macrophyllus Desf. is a good source of beneficial polyphenols with strong antioxidant, anti-hemolytic and health-promoting effects, which promotes its use in pharmaceutical, medicinal and nutraceutical industries.
  • Item
    Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential
    (Food Chemistry, 2021) Gómez Mejía, Esther; Lobo Roriz, Custódio ; Heleno, Sandrina ; Calhelha, Ricardo ; Dias, Maria Inês ; Pinela, José; Rosales Conrado, Noelia; León González, María Eugenia De; Ferreira, Isabel; Barros, Lillian
    Grape (Vitis vinifera L. var. Albariño) and mulberry (Morus nigra L.) seeds pomace were characterized in terms of tocopherols, organic acids, phenolic compounds and bioactive properties. Higher contents of tocopherols (28 ± 1 mg/100 g fw) were obtained in mulberry, whilst grape seeds were richer in organic acids (79 ± 4 mg/100 g fw). The phenolic analysis of hydroethanolic extracts characterised grape seeds by catechin oligomers (36.0 ± 0.3 mg/g) and mulberry seeds by ellagic acid derivatives (3.14 ± 0.02 mg/g). Both exhibited high antimicrobial activity against multiresistant Staphylococcus aureus MIC = 5 mg/mL) and no cytotoxicity against carcinogenic and non-tumour primary liver (PLP) cells. Mulberry seeds revealed the strongest inhibition (p < 0.05) against thiobarbituric reactive substances (IC50 = 23 ± 2 µg/mL) and oxidative haemolysis (IC50 at 60 min = 46.0 ± 0.8 µg/mL). Both seed by-products could be exploited for the developing of antioxidant-rich ingredients with health benefits for industrial application.
  • Item
    A combined approach based on matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles and liquid chromatography to determine polyphenols from grape residues
    (Journal of Chromotography A, 2021) Gómez Mejía, Esther; Hartwig Mikkelsen, Line; Rosales Conrado, Noelia; León González, María Eugenia De; Madrid Albarrán, María Yolanda; Elsevier
    A simple and efficient low-cost matrix solid phase dispersion (MSPD) extraction assisted by TiO2 nanopar- ticles and diatomaceous earth has been developed for the extraction of phenolic compounds from grape and grape pomace wastes. Experimental conditions for MSPD extraction were optimized by a facto- rial design and a surface response methodology. The simultaneous identification and quantification of eight main natural polyphenols (caffeic, p-coumaric, dihydroxybenzoic and gallic acid, rutin, resveratrol, quercetin and catechin) was possible by combining MSPD and capillary liquid chromatography coupled to a diode array detection and a mass simple quadrupole analyzer (cLC-DAD-MS). Good linearity and acceptable LOD (0.05–62 μg· g −1 ) and LOQ (0.2–207 μg· g −1 ) were obtained. The quantities of extracted polyphenols were within 2.4 and 333 μg· g −1, with catechin and rutin the most abundant compounds in rape pomace and grape wastes, respectively. Furthermore, considering the prospective uses of the win- ery bioresidues, the extracts have been characterised in terms of bioactive properties (several antioxidant activities and bacterial inhibition against Staphylococcus aureus, Escherichia coli and Pseudomona aerugi- nosa) and parameters such as total polyphenol and total flavonoid content. The high antioxidant activity (IC 50 5.0 ± 0.4 μg ·g −1 against DPPH radical) and antibacterial activity (2.2 ± 0.3 mg· mL −1 ) suggests that the methodology developed is efficient, rapid and promising for the extraction of phenolic compounds with potential application as bioactive ingredients in food and cosmetic industries.
  • Item
    Neuroprotective activity of selenium nanoparticles against the effect of amino acid enantiomers in Alzheimer’s disease
    (Analytical and Bioanalytical Chemistry, 2022) Vicente Zurdo, David; Rodríguez-Blázquez, Sandra; Gómez Mejía, Esther; Rosales Conrado, Noelia; León González, María Eugenia De; Madrid Albarrán, María Yolanda
    Alzheimer’s disease (AD), the most prevalent neurodegenerative disease, is characterized by extracellular accumulation of amyloid-beta protein (Aβ), which is believed to be the very starting event of AD neurodegeneration. In this work, D-Phe, D-Ala, and D-Glu amino acids, which are the non-occurring enantiomeric form in the human body, and also D-Asp and DL-SeMet, have proved to be amyloidogenic regarding Aβ42 aggregation in TEM studies. These amyloidogenic amino acid enantiomers also widened Aβ42 fibrils up to 437% regarding Aβ42 alone, suggesting that Aβ42 aggregation is enantiomerically dependent. To inhibit enantiomeric-induced amyloid aggregation, selenium nanoparticles stabilized with chitosan (Ch-SeNPs) were successfully synthesized and employed. Thus, Ch-SeNPs reduced and even completely inhibited Aβ42 aggregation produced in the presence of some amino acid enantiomers. In addition, through UV–Vis spectroscopy and fluorescence studies, it was deduced that Ch-SeNPs were able to interact differently with amino acids depending on their enantiomeric form. On the other hand, antioxidant properties of amino acid enantiomers were evaluated by DPPH and TBARS assays, with Tyr enantiomers being the only ones showing antioxidant effect. All spectroscopic data were statistically analysed through experimental design and response surface analysis, showing that the interaction between the Ch-SeNPs and the amino acids studied was enantioselective and allowing, in some cases, to establish the concentration ratios in which this interaction is maximum.
  • Item
    Bioactive polyphenols from Ranunculus macrophyllus Desf. Roots: quantification, identification and antioxidant activity
    (South African Journal of Botany, 2020) Deghima, Amirouche; Righi, Nadjat; Rosales Conrado, Noelia; León González, María Eugenia De; Gómez Mejía, Esther; Madrid Albarrán, María Yolanda; Baali, Faiza; Bedjou, Fatiha
    Ranunculus macrophyllus Desf. is an Algerian medicinal plant whose roots are used in traditional medicine to cure feminine infertility and other diseases, however there are no studies regarding its phytochemistry and biological activities. The aim of this work is to study the phytochemical composition and antioxidant activity of different solvents fractions from the roots of Ranunculus macrophyllus Desf. Spectrophotometric and chromatographic methods were used to study the phytochemical composition; while antiradical, iron chelating ability, reducing power and lipid peroxidation were studied in-vitro. The ethyl acetate fraction showed the highest values of total phenolic compounds (271.0 ± 0.2 µg GAE/mg dry extract (d.e), flavonols (24 ± 5 µg RE/ mg d.e) and condensed tannins (129 ± 10 µg CE/mg d.e), while the hexane fraction contained the highest amount of triterpenoids (91 ± 7 µg UAE/mg d.e). The highest radical scavenging ability was recorded for the ethyl acetate fraction against DPPH (IC50 = 3.7 ± 0.1 µg/mL) and ABTS (IC50 = 81 ± 3 µg/mL) whereas the hexane fraction had the best hydrogen peroxide radical scavenging (IC50 = 380 ± 4 µg/mL). The ethyl acetate fraction had the best total antioxidant capacity (TAC = 361 ± 1 µAAE/ mg extract) and reducing power (310 ± 2 µAAE/mg extract). The β-carotene bleaching was inhibited at high rate even after 24 h by the ethyl acetate fraction (81.0 ± 0.5 %). All activities were correlated with the polyphenolic content of the fractions. Capillary LC-DAD and LC-MS/MS analysis of ethyl acetate fraction revealed high amounts of gallic acid (9.3 ± 0.6 mg/g d.e), dihydroxybenzoic acid (8.1 ± 0.2 mg/g d.e) and hesperidin (5.9 ± 0.6 mg/g d.e). With such high amounts of polyphenols and strong antioxidant activity Ranunculus macrophyllus Desf. roots could have a potential use in pharmaceutical and nutraceutical industries.
  • Item
    Phenolic profile, safety, antioxidant and anti-inflammatory activities of wasted Bunium ferulaceum Sm. aerial parts
    (Food Research International, 2022) Deghima, Amirouche; Righi, Nadjat; Rosales Conrado, Noelia; León González, María Eugenia De; Baali, Faiza; Gómez Mejía, Esther; Madrid Albarrán, María Yolanda; Bedjou, Fatiha
    The pharmaceutical and nutraceutical industries benefit greatly from recycling and transforming non-utilized parts of medicinal plants from agro-industrial operations into value added products. Hence, the aim of this work was to study the potential nutraceutical and pharmaceutical applications of Bunium ferulaceum Sm. aerial parts, in order to maximize their value. The phenolic profile of their hydromethanolic extract was determined and its antioxidant activity was evaluated in vitro and in vivo alongside with its anti-inflammatory activity and safety profile. The extract exerted an in vitro antioxidant activity mainly through radical scavenging (DPPH IC50: 14.0 ± 0.3 µg/ml) and iron chelating ability (24 ± 2 µg/ml), while, in vivo, the extract did not cause any mortality or visible signs of acute toxicity at high dose (2000 mg/kg body weight). The supplementation of the extract at different doses improved mice liver redox state by increasing catalase and reduced glutathione levels and reducing lipid peroxidation, without causing any toxicity. Moreover, the extract efficiently inhibited xylene induced ear inflammation (62 %). These different bioactivities were linked to the phenolic compounds present in the extract, particularly, chlorogenic acid (78 ± 6 mg/g extract), rutin (44 ± 2 mg/g extract) and hesperidin (56 ± 9 mg/g extract). However, further studies should be carried out on the isolated major compounds found in the extract to correlate the activity with these compounds or their mixture. The wasted aerial parts of Bunium ferulaceum Sm. proved to be a valuable source of polyphenols and exhibited interesting health promoting effects with no toxicity. Thus, Bunium ferulaceum Sm. aerial parts can be included in nutraceutical formulations or used as functional food and the extracted compounds may be used as an alternative food preservative.