Person:
Gómez Del Moral Martín-Consuegra, Manuel María

Loading...
Profile Picture
First Name
Manuel María
Last Name
Gómez Del Moral Martín-Consuegra
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Biología Celular
Area
Biología Celular
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury
    (Frontiers in Pharmacology, 2020) Lamas Paz, Arantza; Morán, Laura; Salinas Rodríguez, Beatriz; López Alcántara, Nuria; Asensio, Iris; Fengjie, Hao; Kang, Zheng; Martín Adrados, Beatriz; Moreno Gutiérrez, Laura; Cogolludo Torralba, Ángel Luis; Gómez Del Moral Martín-Consuegra, Manuel María; Martínez Naves, Eduardo; Vaquero Martín, Francisco Javier; Bañares Cañizares, Rafael; Nevzorova, Yulia; Cubero Palero, Francisco Javier
    Binge drinking, i.e., heavy episodic drinking in a short time, has recently become an alarming societal problem with negative health impact. However, the harmful effects of acute alcohol injury in the gut-liver axis remain elusive. Hence, we focused on the physiological and pathological changes and the underlying mechanisms of experimental binge drinking in the context of the gut-liver axis. Eight-week-old mice with a C57BL/6 background received a single dose (p.o.) of ethanol (EtOH) [6 g/kg b.w.] as a preclinical model of acute alcohol injury. Controls received a single dose of PBS. Mice were sacrificed 8 h later. In parallel, HepaRGs and Caco-2 cells, human cell lines of differentiated hepatocytes and intestinal epithelial cells intestinal epithelial cells (IECs), respectively, were challenged in the presence or absence of EtOH [0-100 mM]. Extracellular vesicles (EVs) isolated by ultracentrifugation from culture media of IECs were added to hepatocyte cell cultures. Increased intestinal permeability, loss of zonula occludens-1 (ZO-1) and MUCIN-2 expression, and alterations in microbiota-increased Lactobacillus and decreased Lachnospiraceae species-were found in the large intestine of mice exposed to EtOH. Increased TUNEL-positive cells, infiltration of CD11b-positive immune cells, pro-inflammatory cytokines (e.g., tlr4, tnf, il1β), and markers of lipid accumulation (Oil Red O, srbep1) were evident in livers of mice exposed to EtOH, particularly in females. In vitro experiments indicated that EVs released by IECs in response to ethanol exerted a deleterious effect on hepatocyte viability and lipid accumulation. Overall, our data identified a novel mechanism responsible for driving hepatic injury in the gut-liver axis, opening novel avenues for therapy
  • Item
    Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis
    (Cell Death and Disease, 2023) Kang, Zheng; Fengjie, Hao; Medrano García, Sandra; Chaobo, Chen; Morán Blanco, Laura; Peligros Gómez, María Isabel; Bañares Cañizares, Rafael; Vaquero Martín, Francisco Javier; Gómez Del Moral Martín-Consuegra, Manuel María; Regueiro González-Barros, José Ramón; Martínez Naves, Eduardo; Gallego Durán, Rocío; Maya, Douglas; Ampuero, Javier; Romero Gómez, Manuel; Gilbert Ramos, Albert; Guixé Muntet, Sergi; Fernández Iglesias, Anabel; Gracia Sancho, Jordi; Coll, Mar; Graupera, Isabel; Ginès, Pere; Pericàs, Juan M.; Ramos Molina, Bruno; Herranz, José María; Ávila, Matías A.; Nevzorova, Yulia; Fernández Malavé, Edgar Gonzalo; Cubero Palero, Francisco Javier
    Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.