Person:
Benito Peña, María Elena

Loading...
Profile Picture
First Name
María Elena
Last Name
Benito Peña
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Identification of high-affinity phage-displayed VH fragments by use of a quartz crystal microbalance with dissipation monitoring
    (Sensors and Actuators: B. Chemical, 2021) Gómez-Arribas, Lidia ; Juste-Dolz, Augusto; Peltomaa, Riikka Johanna; Giménez-Romero, David; Morais, Sergi; Barderas, Rodrigo; Cuadrado, Carmen; Maquieira, Ángel; Benito Peña, María Elena; Moreno Bondi, María Cruz
    Phage display has become a powerful tool for antibody discovery in a wide variety of fields. This technology allows specific binders for a given antigen to be selected from combinatorial libraries. A key step in the process is characterizing and evaluating antibody clones thus selected to reliably identify the best antigen binders. Novel characterization methods can provide essential insight into the binding mechanism and supplement the information obtained with conventional techniques. In this work, we used a quartz crystal microbalance with dissipation monitoring (QCM-D) to determine the kinetic and thermodynamic binding parameters for phage-displayed VH antibody fragments. Phytohemagglutinin (PHA), a legume lectin of analytical interest, was used as a complex model antigen to select specific VH fragments from a phage-displayed library. Eight VH fragments with a unique amino acid sequence were identified as PHA binders by using the well-established enzyme-linked immunosorbent assay (ELISA). QCM-D measurements, structural analysis and principal component analysis (PCA) were used to evaluate the antibody fragments and identify clone clusters with similar binding characteristics and molecular interaction mechanisms. This unprecedented study has enabled the identification of high-affinity phage-displayed VH antibody fragments for PHA, which could be useful for PHA analysis (apparent association constant ranged from 10e8 to 10e10 1/M). In fact, the proposed methodology provides a useful tool for evaluating and characterizing antibody fragments with capabilities beyond those of conventional techniques.
  • Item
    Tag-specific affinity purification of recombinant proteins by using molecularly imprinted polymers
    (Analytical Chemistry, 2019) Gómez-Arribas, Lidia ; Urraca Ruiz, Javier; Benito Peña, María Elena; Moreno Bondi, María Cruz
    Epitope tagging is widely used to fuse a known epitope to proteins for which no affinity receptor is available by using recombinant DNA technology. One example is FLAG epitope (DYKDDDDK), which provides better purity and recoveries than the favorite polyhistidine tag. However, purification requires using anti-FLAG antibody resins, the high cost and non-reusability of which restrict widespread use. One cost-effective solution is provided by the use of bioinspired anti-FLAG molecularly imprinted polymers (MIPs). This work describes the development of MIPs, based on the epitope approach, synthesized from the tetrapeptide DYKD as template that affords purification of FLAG-derived recombinant proteins. Polymer was optimized by using a combinatorial approach to select the functional monomer(s) and cross-linker(s), resulting in the best specific affinity toward FLAG and the peptide DYKD. The imprinted resin obtained was used to purify mCherry proteins tagged with either FLAG or DYKD epitopes from crude cell lysates. Both mCherry variants were highly efficiently purified (R ≥ 95%, RSD ≤ 15%, n = 3) and impurities were removed. Unlike existing antibody-based resins, the proposed tag-imprinting strategy provides a general method for meeting the growing demand for efficient, inexpensive, and versatile materials for tagged proteins purification.