Person:
Cogolludo Torralba, Ángel Luis

Loading...
Profile Picture
First Name
Ángel Luis
Last Name
Cogolludo Torralba
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Farmacología y Toxicología
Area
Farmacología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    HIV transgene expression impairs K+ channel function in the pulmonary vasculature
    (American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018) Mondejar Parreño, Gema; Morales Cano, Daniel; Barreira, Bianca; Callejo, Maria; Ruiz-Cabello Osuna, Jesús; Moreno Gutiérrez, Laura; Esquivel Ruiz, Sergio Antonio; Mathie, Alistair; Butrous, Ghazwan; Pérez Vizcaíno, Francisco; Cogolludo Torralba, Ángel Luis
    Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH); however, the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyze whether the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild-type (WT) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries. K+ currents were recorded in freshly isolated pulmonary artery smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using quantitative RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized than those from WT. Whereas voltage-gated K+ channel 1.5 (Kv1.5) currents were preserved, pH-sensitive noninactivating background currents (IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L-364,373 assessed by vascular reactivity and patch-clamp experimental approaches. Although we found pulmonary vascular remodeling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH.
  • Item
    HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape
    (Cells, 2022) Medrano García, Sandra; Morales Cano, Daniel; Barreira, Bianca; Pérez Vizcaíno, Francisco; Fernández Malavé, Edgar Gonzalo; Cogolludo Torralba, Ángel Luis
    HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
  • Item
    Riociguat versus sildenafil on hypoxic pulmonary vasoconstriction and ventilation/perfusion matching
    (PLoS ONE, 2018) Chamorro, Virginia; Morales Cano, Daniel; Milara, Javier; Barreira, Bianca; Moreno Gutiérrez, Laura; Callejo, Maria; Mondejar Parreño, Gema; Esquivel Ruiz, Sergio Antonio; Cortijo, Julio; Cogolludo Torralba, Ángel Luis; Barberá, Joan A.; Pérez Vizcaíno, Francisco; Vinicio A. de Jesus Perez
    Introduction Current treatment with vasodilators for pulmonary hypertension associated with respiratory diseases is limited by their inhibitory effect on hypoxic pulmonary vasoconstriction (HPV) and uncoupling effects on ventilation-perfusion (V’/Q’). Hypoxia is also a well-known modulator of the nitric oxide (NO) pathway, and may therefore differentially affect the responses to phosphodiesterase 5 (PDE5) inhibitors and soluble guanylyl cyclase (sGC) stimulators. So far, the effects of the sGC stimulator riociguat on HPV have been poorly characterized. Materials and methods Contraction was recorded in pulmonary arteries (PA) in a wire myograph. Anesthetized rats were catheterized to record PA pressure. Ventilation and perfusion were analyzed by micro-CT-SPECT images in rats with pulmonary fibrosis induced by bleomycin. Results The PDE5 inhibitor sildenafil and the sGC stimulator riociguat similarly inhibited HPV in vitro and in vivo. Riociguat was more effective as vasodilator in isolated rat and human PA than sildenafil. Riociguat was ≈3-fold more potent under hypoxic conditions and it markedly inhibited HPV in vivo at a dose that barely affected the thromboxane A2 (TXA2) mimetic U46619-induced pressor responses. Pulmonary fibrosis was associated with V’/Q’ uncoupling and riociguat did not affect the V’/Q’ ratio. Conclusion PDE5 inhibitors and sGC stimulators show a different vasodilator profile. Riociguat was highly effective and potentiated by hypoxia in rat and human PA. In vivo, riociguat preferentially inhibited hypoxic than non-hypoxic vasoconstriction. However, it did not worsen V’/Q’ coupling in a rat model of pulmonary fibrosis.