Person:
Cotillas Soriano, Salvador

Loading...
Profile Picture
First Name
Salvador
Last Name
Cotillas Soriano
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Ingeniería Química
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Remediation of the Alluvial Aquifer of the Sardas Landfill (Sabiñánigo, Huesca) by Surfactant Application
    (Sustainability, 2022) Guadaño, Joaquín; Gómez, Jorge; Fernández, Jesús; Lorenzo Fernández, David; Dominguez Torre, Carmen M.; Cotillas Soriano, Salvador; García Cervilla, Raúl; Santos López, Aurora
    Sardas Landfill at Sabiñánigo Huesca is polluted with Dense Non-Aqueous Liquid Phases (DNAPLs) composed of a complex mixture of chlorinated organic compounds (COCs). This DNAPL was produced as liquid waste from lindane production being dumped decades ago in the unlined landfills close to the lindane factory. This DNAPL migrated by gravity through the subsurface and accumulated in the contact between the alluvial and marls layers (about 15 m b.g.l.). Seven injections of an aqueous emulsion of a biodegradable non-ionic surfactant (E-Mulse 3®) were carried out at the most polluted areas of the Sardas alluvial. Injections were carried out between April and November 2021 using different surfactant concentrations (6.7, 20, 25 and 50 g/L), injection volumes (0.2 to 7 m3) and injection flow rates (0.08–0.85 m3/h). Injected fluids were extracted in the same well or surrounding wells, and the time elapsed between surfactant injection and extraction varied between 24 and 72 h. A total of 22 m3 were injected into the alluvial, and more than double this injected volume was extracted. Injection and extraction points were in the contact between the marls and the alluvial layer. Extracted fluid accumulated in tanks, and phases separated. DNAPL recovered here was mobilized rather than solubilized and managed as toxic waste. The aqueous supernatant was treated in a wastewater treatment plant with physicochemical treatment (including adsorption in activated carbon) before being discharged into the environment. The transport of the injected fluids was monitored by conductivity profiles using bromide (260–538 mg·L−1) as a conservative tracer. High radial dispersion of the injected fluid was found. Surfactant losses by adsorption in the alluvial and absorption in DNAPL were noticed, and both surfactant and contamination did not escape from the capture zone. Monitoring since 2018 of the COCS in groundwater and the DNAPL presence in the contact between alluvial and marls layers showed a significant reduction of COCs in the treated zone with the surfactant injections.
  • Item
    LED visible light assisted photochemical oxidation of HCHs in aqueous phases polluted with DNAPL
    (Process Safety and Environmental Protection, 2022) Conte, Leandro O.; Cotillas Soriano, Salvador; Sánchez Yepes, Andrés; Lorenzo Fernández, David; Santos López, Aurora
    This work focuses on removing hexachlorocyclohexanes (HCHs) found in groundwater polluted with dense non-aqueous phase liquids (DNAPLs) by photo-oxidation with hydrogen peroxide or persulfate using LED visible light and ferrioxalate as the catalyst. Single oxidation tests were also performed to evaluate the contribution of LED-vis light on HCHs removal. Results show that it is possible to attain the degradation of HCHs up to 85% in 420 min with persulfate, whereas percentages lower than 40% are obtained when using hydrogen peroxide. Using both oxidants in the presence of ferrioxalate and LED visible light promotes the generation of hydroxyl and sulfate radicals under circumneutral pH values, which are the main responsible species for HCHs removal. Specifically, an oxidant conversion higher than 50% was achieved during the photochemical treatment with both oxidants, whereas conversions below 20% were obtained in the absence of LED visible light irradiation. On the other hand, DNAPL produced as liquid residuum of lindane production contains other chlorinated organic compounds (COCs), which are susceptible to being oxidized by hydroxyl and sulfate radicals, generating competitive oxidation reactions. The final conversion of chlorbenzenes reaches values close to 100% and HCHs are only effectively removed when persulfate is used as the oxidant. This better performance indicates that the photo-oxidation of DNAPL polluted groundwater with LED-vis light should be carried out with persulfate to ensure the removal of more dangerous COCs. This confirms the excellent ability of sulfate radicals for C-Cl bond breakdown.
  • Item
    The integration of ZVI-dehalogenation and electrochemical oxidation for the treatment of complex effluents polluted with iodinated compounds
    (Journal of Environmental Chemical Engineering, 2022) Moratalla, Ángela; Correia, Sergio E.; Cotillas Soriano, Salvador; Lacasa, Engracia; Cañizares, Pablo C.; Rodrigo, Manuel A.; Sáez Blázquez, Cristina
    This work evaluates the integration of dehalogenation with Zero Valent Iron (ZVI) and electrochemical oxidation (EO) for the treatment of urines polluted with iodinated X-ray contrast media (ICM). To do this, different strategies were evaluated: pretreatment with ZVI followed by EO (ZVI-EO) or electrolysis enhanced with ZVI-dehalogenation (EO/ZVI). For comparison purposes, single electrolysis was also performed to check the best treatment strategy. Results showed that EO was less efficient than EO/ZVI and ZVI-EO processes. Removal percentages of 74.9%, 87.6% and 99.5% were reached after passing 13.8 Ah dm−3 at 10 mA cm−2 during EO, EO/ZVI and ZVI-EO, respectively. EO/ZVI process favored the production of large amounts of hydroxyl radicals in the effluent through Fenton´s reaction, enhancing the degradation rate of iopamidol (IPM). The pretreatment with ZVI allowed to transform up to 95% of IPM to C17H25N3O8. Then, electrolysis attained the almost complete removal of the raw pollutant (ZVI-EO). The different iodine species formed at the end of the treatment were also monitored, finding similar proportions of organic iodine species for EO and EO/ZVI processes, although single EO promoted the formation of the stable inorganic iodine (IO3-) and EO/ZVI favored the release of I-. Total organic carbon removal percentages lower than 20% were achieved, suggesting that the technologies employed were selective for the removal of the target pollutant under the operating conditions studied. Finally, the organic IPM by-products were also identified by LC-MS and the chromatographic area profiles showed higher values for EO/ZVI followed by ZVI-EO and EO.
  • Item
    Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine
    (Molecules, 2021) Moratalla, Ángela; Cotillas Soriano, Salvador; Lacasa, Engracia; Cañizares, Pablo C.; Rodrigo, Manuel A.; Sáez, Cristina
    The inefficiency of conventional biological processes to remove pharmaceutical compounds (PhCs) in wastewater is leading to their accumulation in aquatic environments. These compounds are characterized by high toxicity, high antibiotic activity and low biodegradability, and their presence is causing serious environmental risks. Because much of the PhCs consumed by humans are excreted in the urine, hospital effluents have been considered one of the main routes of entry of PhCs into the environment. In this work, a critical review of the technologies employed for the removal of PhCs in hospital wastewater was carried out. This review provides an overview of the current state of the developed technologies for decreasing the chemical risks associated with the presence of PhCs in hospital wastewater or urine in the last years, including conventional treatments (filtration, adsorption, or biological processes), advanced oxidation processes (AOPs) and electrochemical advanced oxidation processes (EAOPs).