Person:
Martínez Ruiz, Antonio

Loading...
Profile Picture
First Name
Antonio
Last Name
Martínez Ruiz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 11
  • Item
    Acute hypoxia produces a superoxide burst in cells
    (Free Radical Biology and Medicine, 2014) Hernansanz-Agustín, Pablo; Izquierdo-Álvarez, Alicia; Sánchez-Gómez, Francisco J.; Ramos, Elena; Villa-Piña, Tamara; Lamas, Santiago; Bogdanova, Anna; Martínez Ruiz, Antonio
    Oxygen is a key molecule for cell metabolism. Eukaryotic cells sense the reduction in oxygen availability (hypoxia) and trigger a series of cellular and systemic responses to adapt to hypoxia, including the optimization of oxygen consumption. Many of these responses are mediated by a genetic program induced by the hypoxia-inducible transcription factors (HIFs), regulated by a family of prolyl hydroxylases (PHD or EGLN) that use oxygen as a substrate producing HIF hydroxylation. In parallel to these oxygen sensors modulating gene expression within hours, acute modulation of protein function in response to hypoxia is known to occur within minutes. Free radicals acting as second messengers, and oxidative posttranslational modifications, have been implied in both groups of responses. Localization and speciation of the paradoxical increase in reactive oxygen sp+ecies production in hypoxia remain debatable. We have observed that several cell types respond to acute hypoxia with a transient increase in superoxide production for about 10 min, probably originating in the mitochondria. This may explain in part the apparently divergent results found by various groups that have not taken into account the time frame of hypoxic ROS production. We propose that this acute and transient hypoxia-induced superoxide burst may be translated into oxidative signals contributing to hypoxic adaptation and preconditioning
  • Item
    Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: Convergences and divergences
    (Cardiovascular research, 2007) Martínez Ruiz, Antonio; Lamas, Santiago
    The role of nitric oxide in several signalling routes has been clearly established. In recent years increasing attention has been paid to its ability to produce covalent protein post-translational modifications in conjunction with other reactive oxygen and nitrogen species. Among these, the modification of cysteine residues has been shown to be of particular importance due to the functional relevance of many of them. In this review, we focus on the modification of the cysteine thiol by incorporation of a NO moiety (S-nitrosylation) or of a glutathione moiety (S-glutathionylation). Both modifications are produced by different reactions induced by nitric oxide-related species. We discuss the differences and similarities of both modifications, and their relationships, in regard to the biochemical mechanisms that produce them, including the enzymatic activities that may catalyze some of them and their subcellular compartmentalization. Even when biochemical knowledge is one step ahead of the demonstration of their pathophysiological relevance, we also describe the potential role of both modifications in several processes in which both post-translational modifications are involved. © 2007 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
  • Item
    Induction of the Mitochondrial NDUFA4L2 Protein by HIF-1α Decreases Oxygen Consumption by Inhibiting Complex I Activity
    (Cell Metabolism, 2011) Tello, Daniel; Balsa, Eduardo; Acosta-Iborra, Bárbara; Fuertes-Yebra, Esther; Elorza, Ainara; Ordóñez, Ángel; Corral-Escariz, María; Soro, Inés; López-Bernardo, Elia; Perales-Clemente, Ester; Martínez Ruiz, Antonio; Enríquez, José Antonio; Aragonés, Julián; Cadenas, Susana; Landázuri, Manuel O.
    The fine regulation of mitochondrial function has proved to be an essential metabolic adaptation to fluctuations in oxygen availability. During hypoxia, cells activate an anaerobic switch that favors glycolysis and attenuates the mitochondrial activity. This switch involves the hypoxia-inducible transcription factor-1 (HIF-1). We have identified a HIF-1 target gene, the mitochondrial NDUFA4L2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2). Our results, obtained employing NDUFA4L2-silenced cells and NDUFA4L2 knockout murine embryonic fibroblasts, indicate that hypoxiainduced NDUFA4L2 attenuates mitochondrial oxygen consumption involving inhibition of Complex I activity, which limits the intracellular ROS production under low-oxygen conditions. Thus, reducing mitochondrial Complex I activity via NDUFA4L2 appears to be an essential element in the mitochondrial reprogramming induced by HIF-1.
  • Item
    Functional interplay between endothelial nitric oxide synthase and membrane type 1–matrix metalloproteinase in migrating endothelial cells
    (Blood, 2007) Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.; Arroyo, Alicia G.
    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motilityassociated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NOinduced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders.
  • Item
    S-nitrosylation: a potential new paradigm in signal transduction
    (Cardiovascular Research, 2004) Martínez Ruiz, Antonio; Lamas, Santiago
    Much attention has been paid to nitric oxide (NO) research since its discovery as a physiological mediator in the cardiovascular system. In recent years, newer roles have been attributed to this molecule and its close relatives, termed collectively reactive nitrogen species (RNS). These roles relate to different mechanisms of protein modification, among which S-nitrosylation of cysteines has emerged as a potential new paradigm in signal transduction and regulation of protein function. We review here the chemical basis of this modification compared with other protein modifications related to nitric oxide, as well as the kind of specificity we can expect from it. We also review the current methodologies that can be applied to the study of S-nitrosylation and identification of S-nitrosylated proteins in cells, and detail the relevance of this modification in several proteins related to cardiovascular system.
  • Item
    S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities
    (Proceedings of the National Academy of Science of the United States os America, 2005) Martínez Ruiz, Antonio; Villanueva, Laura; González de Orduña, Cecilia; López-Ferrer, Daniel; Higueras, María Ángeles; Tarín, Carlos; Rodríguez Crespo, José Ignacio; Vázquez, Jesús; Lamas, Santiago; Ignarro, Louis J.
    Nitric oxide is implicated in a variety of signaling pathways in different systems, notably in endothelial cells. Some of its effects can be exerted through covalent modifications of proteins and, among these modifications, increasing attention is being paid to S-nitrosylation as a signaling mechanism. In this work, we show by a variety of methods (ozone chemiluminescence, biotin switch, and mass spectrometry) that the molecular chaperone Hsp90 is a target of S-nitrosylation and identify a susceptible cysteine residue in the region of the C-terminal domain that interacts with endothelial nitric oxide synthase (eNOS). We also show that the modification occurs in endothelial cells when they are treated with S-nitrosoL-cysteine and when they are exposed to eNOS activators. Hsp90 ATPase activity and its positive effect on eNOS activity are both inhibited by S-nitrosylation. Together, these data suggest that S-nitrosylation may functionally regulate the general activities of Hsp90 and provide a feedback mechanism for limiting eNOS activation.
  • Item
    “Oxygen Sensing” by Na,K-ATPase: These Miraculous Thiols
    (Frontiers in Physiology, 2016) Bogdanova, Anna; Petrushanko, Irina Y.; Hernansanz-Agustín, Pablo; Martínez Ruiz, Antonio
    Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its “oxygen-sensitivity” is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase “oxygen-sensitive.” This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the “optimal” level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors’ activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes underlying successful adaptation strategies will make it possible to harness them and use for treatment of patients with stroke and myocardial infarction, sleep apnoea and high altitude pulmonary oedema, and those undergoing surgical interventions associated with the interruption of blood perfusion.
  • Item
    Specificity in S-Nitrosylation: A Short-Range Mechanism for NO Signaling?
    (Antioxidants & redox signaling, 2013) Martínez Ruiz, Antonio; Araújo, Inês M.; Izquierdo-Álvarez, Alicia; Hernansanz-Agustín, Pablo; Lamas, Santiago; Serrador, Juan M.
    Significance: Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. Recent Advances: Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. Critical Issues: We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. Future Directions: Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings.
  • Item
    S‐nitrosation and neuronal plasticity
    (British Journal of Pharmacology, 2014) Santos, A. I.; Martínez Ruiz, Antonio; Araújo, I. M .
    Nitric oxide (NO) has long been recognized as a multifaceted participant in brain physiology. Despite the knowledge that was gathered over many years regarding the contribution of NO to neuronal plasticity, for example the ability of the brain to change in response to new stimuli, only in recent years have we begun to understand how NO acts on the molecular and cellular level to orchestrate such important phenomena as synaptic plasticity (modification of the strength of existing synapses) or the formation of new synapses (synaptogenesis) and new neurons (neurogenesis). Post-translational modification of proteins by NO derivatives or reactive nitrogen species is a non-classical mechanism for signalling by NO. S-nitrosation is a reversible post-translational modification of thiol groups (mainly on cysteines) that may result in a change of function of the modified protein. S-nitrosation of key target proteins has emerged as a main regulatory mechanism by which NO can influence several levels of brain plasticity, which are reviewed in this work. Understanding how S-nitrosation contributes to neural plasticity can help us to better understand the physiology of these processes, and to better address pathological changes in plasticity that are involved in the pathophysiology of several neurological diseases.
  • Item
    Human glutathione-S-transferase pi potentiates the cysteine-protease activity of the Der p 1 allergen from house dust mite through a cysteine redox mechanism
    (Redox Biology, 2019) López Rodríguez, Juan Carlos; Manosalva, Juliana; Cabrera-García, J. Daniel; Escribese, María M.; Villalba, Mayte; Barber, Domingo; Martínez Ruiz, Antonio; Batanero Cremades, Eva
    Environmental proteases have been widely associated to the pathogenesis of allergic disorders. Der p 1, a cysteine-protease from house dust mite (HDM) Dermatophagoides pteronyssinus, constitutes one of the most clinically relevant indoor aeroallergens worldwide. Der p 1 protease activity depends on the redox status of its catalytic cysteine residue, which has to be in the reduced state to be active. So far, it is unknown whether Der p 1-protease activity could be regulated by host redox microenvironment once it reaches the lung epithelial lining fluid in addition to endogenous mite components. In this sense, Glutathione-S-transferase pi (GSTpi), an enzyme traditionally linked to phase II detoxification, is highly expressed in human lung epithelial cells, which represent the first line of defence against aeroallergens. Moreover, GSTpi is a generalist catalyst of protein S-glutathionylation reactions, and some polymorphic variants of this enzyme has been associated to the development of allergic asthma. Here, we showed that human GSTpi increased the cysteine-protease activity of Der p 1, while GSTmu (the isoenzyme produced by the mite) did not alter it. GSTpi induces the reduction of Cys residues in Der p 1, probably by rearranging its disulphide bridges. Furthermore, GSTpi was detected in the apical medium collected from human bronchial epithelial cell cultures, and more interesting, it increased cysteine-protease activity of Der p 1. Our findings support the role of human GSTpi from airways in modulating of Der p 1 cysteineprotease activity, which may have important clinical implications for immune response to this aeroallergen in genetically susceptible individuals.