Person:
Bruña Fernández, Ricardo

Loading...
Profile Picture
First Name
Ricardo
Last Name
Bruña Fernández
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Radiología, Rehabilitación y Fisioterapia
Area
Radiología y Medicina Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 8 of 8
  • Item
    BDNF Val66Met polymorphism and gamma band disruption in resting state brain functional connectivity: A magnetoencephalography study in cognitively intact older females
    (Frontiers in Neuroscience, 2018) Rodríguez Rojo, Inmaculada Concepción; Cuesta Prieto, Pablo; López García, María Eugenia; De Frutos Lucas, Jaisalmer; Bruña Fernández, Ricardo; Pereda de Pablo, Ernesto; Barabash Bustelo, Ana; Montejo, Pedro; Montenegro Peña, María Mercedes; Marcos Dolado, Alberto; López-Higes, Ramón; Fernández Lucas, Alberto Amable; Maestu Unturbe, Fernando
    The pathophysiological processes undermining brain functioning decades before the onset of the clinical symptoms associated with dementia are still not well understood. Several heritability studies have reported that the Brain Derived Neurotrophic Factor (BDNF) Val66Met genetic polymorphism could contribute to the acceleration of cognitive decline in aging. This mutation may affect brain functional connectivity (FC), especially in those who are carriers of the BDNF Met allele. The aim of this work was to explore the influence of the BDNF Val66Met polymorphism in whole brain eyes-closed, resting-state magnetoencephalography (MEG) FC in a sample of 36 cognitively intact (CI) older females. All of them were ε3ε3 homozygotes for the apolipoprotein E (APOE) gene and were divided into two subgroups according to the presence of the Met allele: Val/Met group (n = 16) and Val/Val group (n = 20). They did not differ in age, years of education, Mini-Mental State Examination scores, or normalized hippocampal volumes. Our results showed reduced antero-posterior gamma band FC within the Val/Met genetic risk group, which may be caused by a GABAergic network impairment. Despite the lack of cognitive decline, these results might suggest a selective brain network vulnerability due to the carriage of the BDNF Met allele, which is linked to a potential progression to dementia. This neurophysiological signature, as tracked with MEG FC, indicates that age-related brain functioning changes could be mediated by the influence of particular genetic risk factors.
  • Item
    How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment From Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters
    (Frontiers in Neuroscience, 2018) López García, María Eugenia; Bruña Fernández, Ricardo; Cuesta Prieto, Pablo; Marcos Dolado, Alberto; Maestu Unturbe, Fernando
    Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α1:α2 and 94% for the iPLV in α2. Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.
  • Item
    Phase locking value revisited: teaching new tricks to an old dog
    (Journal of Neural Engineering, 2018) Bruña Fernández, Ricardo; Maestu Unturbe, Fernando; Pereda, Ernesto
    Objective. Despite the increase in calculation power over the last few decades, the estimation of brain connectivity is still a tedious task. The high computational cost of the algorithms escalates with the square of the number of signals evaluated, usually in the range of thousands. In this work we propose a re-formulation of a widely used algorithm that allows the estimation of whole brain connectivity in much smaller times. Approach. We start from the original implementation of phase locking value (PLV) and re-formulated it in a computationally very efficient way. What is more, this formulation stresses its strong similarity with coherence, which we used to introduce two new metrics insensitive to zero lag synchronization: the imaginary part of PLV (iPLV) and its corrected counterpart (ciPLV). Main results. The new implementation of PLV avoids some highly CPU-expensive operations and achieves a 100-fold speedup over the original algorithm. The new derived metrics were highly robust in the presence of volume conduction. Moreover, ciPLV proved capable of ignoring zero-lag connectivity, while correctly estimating nonzero-lag connectivity. Significance. Our implementation of PLV makes it possible to calculate whole-brain connectivity in much shorter times. The results of the simulations using ciPLV suggest that this metric is ideal to measure synchronization in the presence of volume conduction or source leakage effects.
  • Item
    Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: a study of 379 individuals
    (Geroscience, 2022) Chino, Brenda; Cuesta Prieto, Pablo; Pacios García, Javier; De Frutos Lucas, Jaisalmer; Torres Simón, Lucía; Doval Moreno, Sandra; Marcos Dolado, Alberto; Bruña Fernández, Ricardo; Maestu Unturbe, Fernando
    Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer’s disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance.
  • Item
    Abnormal organization of inhibitory control functional networks in future binge drinkers
    (Drug and Alcohol Dependence, 2021) Antón Toro, Luis Fernando; Bruña Fernández, Ricardo; Suárez Méndez, Isabel; Correas Marín, María De Los Ángeles; García Moreno, Luis Miguel; Maestu Unturbe, Fernando
    Background and aims Adolescent Binge drinking has become an increasing health and social concern, which cause several detrimental consequences for brain integrity. However, research on neurophysiological traits of vulnerability for binge drinking predisposition is limited at this time. In this work, we conducted a two-year longitudinal study with magnetoencephalography (MEG) over a cohort of initially alcohol-naive adolescents with the purpose of characterize inhibitory cortical networks’ anomalies prior to alcohol consumption onset in those youths who will transit into binge drinkers years later. Methods Sixty-seven participant’s inhibitory functional networks, and dysexecutive/impulsivity traits were measured by means of inhibitory task (go/no-go) and questionnaires battery. After a follow-up period of two years, we evaluated their alcohol consumption habits, sub-dividing them in two groups according to their alcohol intake patterns: future binge drinkers (fBD): n = 22; future Light/non-drinkers (fLD): n = 17. We evaluated whole-brain and seed-based functional connectivity profiles, as well as its correlation with impulsive and dysexecutive behaviours, searching for early abnormalities before consumption onset. Results For the first time, abnormalities in MEG functional networks and higher dysexecutive and impulsivity profiles were detected in alcohol-naïve adolescents who two years later became binge drinkers. Concretely, fBD exhibit a distinctive pattern of beta band hyperconnectivity among crucial regions of inhibitory control networks, positively correlated with behavioral traits and future alcohol intake rate. Conclusions These findings strongly support the idea of early neurobiological vulnerabilities for substances consumption initiation, with inhibitory functional networks’ abnormalities as a relevant neurophysiological marker of subjects at risk— we hypothesize this profile is due to neurodevelopmental and neurobiological differences involving cognitive control networks and neurotransmission pathways.
  • Item
    Longitudinal change of inhibitory control functional connectivity associated with the development of heavy alcohol drinking
    (Frontiers in Psychology, 2023) Antón Toro, Luis Fernando; Shpakivska Bilan, Danylyna; Del Cerro León, Alberto; Bruña Fernández, Ricardo; Uceta García, Marcos; García Moreno, Luis Miguel; Maestu Unturbe, Fernando; Campanella, Salvatore
    Introduction: Heavy drinking (HD) prevalent pattern of alcohol consumption among adolescents, particularly concerning because of their critical vulnerability to the neurotoxic effects of ethanol. Adolescent neurodevelopment is characterized by critical neurobiological changes of the prefrontal, temporal and parietal regions, important for the development of executive control processes, such as inhibitory control (IC). In the present Magnetoencephalography (MEG) study, we aimed to describe the relationship between electrophysiological Functional Connectivity (FC) during an IC task and HD development, as well as its impact on functional neuromaturation. Methods: We performed a two-year longitudinal protocol with two stages. In the first stage, before the onset of HD, we recorded brain electrophysiological activity from a sample of 67 adolescents (mean age = 14.6 ± 0.7) during an IC task. Alcohol consumption was measured using the AUDIT test and a semi-structured interview. Two years later, in the second stage, 32 of the 67 participants (mean age 16.7 ± 0.7) completed a similar protocol. As for the analysis in the first stage, the source-space FC matrix was calculated, and then, using a cluster-based permutation test (CBPT) based on Spearman's correlation, we calculated the correlation between the FC of each cortical source and the number of standard alcohol units consumed two years later. For the analysis of longitudinal change, we followed a similar approach. We calculated the symmetrized percentage change (SPC) between FC at both stages and performed a CBPT analysis, analyzing the correlation between FC change and the level of alcohol consumed in a regular session. Results: The results revealed an association between higher beta-band FC in the prefrontal and temporal regions and higher consumption years later. Longitudinal results showed that greater future alcohol consumption was associated with an exacerbated reduction in the FC of the same areas. Discussion: These results underline the existence of several brain functional differences prior to alcohol misuse and their impact on functional neuromaturation.
  • Item
    Functional Connectivity Hypersynchronization in Relatives of Alzheimer’s Disease Patients: An Early E/I Balance Dysfunction?
    (Cerebral Cortex, 2020) Ramírez Toraño, Federico; Bruña Fernández, Ricardo; De Frutos Lucas, Jaisalmer; Rodríguez Rojo, Inmaculada Concepción; Marcos de Pedro, Silvia; Delgado Losada, María Luisa; Gómez Ruiz, N; Barabash Bustelo, Ana; Marcos Dolado, Alberto; López Higes, Ramón; Maestu Unturbe, Fernando
    Alzheimer’s disease (AD) studies on animal models, and humans showed a tendency of the brain tissue to become hyperexcitable and hypersynchronized, causing neurodegeneration. However, we know little about either the onset of this phenomenon or its early effects on functional brain networks. We studied functional connectivity (FC) on 127 participants (92 middle-age relatives of AD patients and 35 age-matched nonrelatives) using magnetoencephalography. FC was estimated in the alpha band in areas known both for early amyloid accumulation and disrupted FC in MCI converters to AD. We found a frontoparietal network (anterior cingulate cortex, dorsal frontal, and precuneus) where relatives of AD patients showed hypersynchronization in high alpha (not modulated by APOE-ε4 genotype) in comparison to age-matched nonrelatives. These results represent the first evidence of neurophysiological events causing early network disruption in humans, opening a new perspective for intervention on the excitation/inhibition unbalance.
  • Item
    An individual data-driven virtual resection model based on epileptic network dynamics in children with intractable epilepsy: a magnetoencephalography interictal activity application
    (Brain Communications, 2023) Cuesta Prieto, Pablo; Bruña Fernández, Ricardo; Shah, Ekta; Laohathai, Christopher; Garcia-Tarodo, Stephanie; Funke, Michael; Von Allmen, Gretchen; Maestu Unturbe, Fernando
    Epilepsy surgery continues to be a recommended treatment for intractable (medication-resistant) epilepsy; however, 30–70% of epilepsy surgery patients can continue to have seizures. Surgical failures are often associated with incomplete resection or inaccurate localization of the epileptogenic zone. This retrospective study aims to improve surgical outcome through in silico testing of surgical hypotheses through a personalized computational neurosurgery model created from individualized patient’s magnetoencephalography recording and MRI. The framework assesses the extent of the epileptic network and evaluates underlying spike dynamics, resulting in identification of one single brain volume as a candidate for resection. Dynamic-locked networks were utilized for virtual cortical resection. This in silico protocol was tested in a cohort of 24 paediatric patients with focal drug-resistant epilepsy who underwent epilepsy surgery. Of 24 patients who were included in the analysis, 79% (19 of 24) of the models agreed with the patient's clinical surgery outcome and 21% (5 of 24) were considered as model failures (accuracy 0.79, sensitivity 0.77, specificity 0.82). Patients with unsuccessful surgery outcome typically showed a model cluster outside of the resected cavity, while those with successful surgery showed the cluster model within the cavity. Two of the model failures showed the cluster in the vicinity of the resected tissue and either a functional disconnection or lack of precision of the magnetoencephalography–MRI overlapping could explain the results. Two other cases were seizure free for 1 year but developed late recurrence. This is the first study that provides in silico personalized protocol for epilepsy surgery planning using magnetoencephalography spike network analysis. This model could provide complementary information to the traditional pre-surgical assessment methods and increase the proportion of patients achieving seizure-free outcome from surgery.